rút gọn biểu thức \(\sqrt{\dfrac{a^3}{a}}\) với a <0 ta đc kết quả là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{a+3\sqrt{a}-3\sqrt{a}+9-a+2}{a-9}=\dfrac{11}{a-9}\)
\(N=\dfrac{a+3\sqrt{a}}{\sqrt{a}+3}-\sqrt{a}\)
\(N=\dfrac{\sqrt{a}\sqrt{a}+3\sqrt{a}}{\sqrt{a}+3}-\sqrt{a}\)
\(N=\dfrac{\sqrt{a}\left(\sqrt{a}+3\right)}{\sqrt{a}+3}-\sqrt{a}\)
\(N=\sqrt{a}-\sqrt{a}\)
\(N=0\)
\(\dfrac{a+3\sqrt{a}}{\sqrt{a}+3}-\dfrac{\sqrt{a}\left(\sqrt{a}+3\right)}{\sqrt{a}+3}\)
\(=\dfrac{a+3\sqrt{a}-\left(a+3\sqrt{a}\right)}{\sqrt{a}+3}\)
\(=\dfrac{a+3\sqrt{a}-a-3\sqrt{a}}{\sqrt{a}+3}\)
\(=\dfrac{0}{\sqrt{a}+3}\)
\(=0\)
Câu 2:
Ta có: \(M=\left(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}+1\right)\left(1+\dfrac{a-\sqrt{a}}{1-\sqrt{a}}\right)\)
\(=\left(\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}+1\right)\left(1-\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\)
\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)\)
\(=1-a\)
Câu 1:
Ta có: \(A=\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\)
\(=\left(\dfrac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1}{\sqrt{a}+1}\right)^2\)
\(=\left(\sqrt{a}+1\right)^2\cdot\dfrac{1}{\left(\sqrt{a}+1\right)^2}\)
\(=1\)
\(\dfrac{\sqrt{a^3}}{\sqrt{a}}=\dfrac{a\sqrt{a}}{\sqrt{a}}=a\)(với a>0)
Với a>0 ta có:
\(\dfrac{\sqrt{a^3}}{\sqrt{a}}=\dfrac{\sqrt{a^2\cdot a}}{\sqrt{a}}=\dfrac{\left|a\right|\cdot\sqrt{a}}{\sqrt{a}}=a\)( vì \(a>0\Rightarrow\left|a\right|=a\))
a: Ta có: \(P=\left(\dfrac{4a}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{a}}\right)\cdot\dfrac{\sqrt{a}-1}{a^2}\)
\(=\dfrac{4a-1}{\sqrt{a}-1}\cdot\dfrac{\sqrt{a}-1}{a^2}\)
\(=\dfrac{4a-1}{a^2}\)
b: Để P=3 thì \(4a-1=3a^2\)
\(\Leftrightarrow3a^2-4a+1=0\)
\(\Leftrightarrow\left(3a-1\right)\left(a-1\right)=0\)
hay \(a=\dfrac{1}{9}\)
a) ĐK: a>0; a≠1
Ta có: \(P=\left(\dfrac{4a}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{a}}\right).\dfrac{\sqrt{a}-1}{a^2}\)
\(=\left(\dfrac{4a}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}-1}\right).\dfrac{\sqrt{a}-1}{a^2}\)
\(=\dfrac{4a-1}{\sqrt{a}-1}.\dfrac{\sqrt{a}-1}{a^2}=\dfrac{4a-1}{a^2}\)
b) Ta có: \(P=3\Leftrightarrow\dfrac{4a-1}{a^2}=3\Leftrightarrow3a^2=4a-1\Leftrightarrow3a^2-4a+1=0\)
\(\Leftrightarrow\left(a-1\right)\left(3a-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\left(loại\right)\\a=\dfrac{1}{3}\left(tm\right)\end{matrix}\right.\)
\(P=\dfrac{9\sqrt{a}-\sqrt{25a}+\sqrt{4a^3}}{a^2+2a}=\dfrac{9\sqrt{a}-5\sqrt{a}+2a\sqrt{a}}{a\left(a+2\right)}=\dfrac{4\sqrt{a}+2a\sqrt{a}}{a\left(a+2\right)}=\dfrac{2\sqrt{a}\left(2+a\right)}{a\left(2+a\right)}=\dfrac{2\sqrt{a}}{a}=\dfrac{2.\sqrt{a}}{\sqrt{a}.\sqrt{a}}=\dfrac{2}{\sqrt{a}}\)
`a)đk:a>0,a ne 9`
`A=((sqrta+3+sqrta-3)/(a-9)).((sqrta-3)/sqrta)`
`=((2sqrtx)/(a-9)).((sqrta-3)/sqrta)`
`=2/(sqrta+3)`
`b)A>1/2`
`<=>2/(sqrta+3)>1/2`
`<=>sqrta+3<4`
`<=>sqrta<1`
`<=>a<1`
KẾt hợp đkxđ:`0<x<1`
ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\a\ne9\end{matrix}\right.\)
a) Ta có: \(A=\left(\dfrac{1}{\sqrt{a}-3}+\dfrac{1}{\sqrt{a}+3}\right)\left(1-\dfrac{3}{\sqrt{a}}\right)\)
\(=\dfrac{\sqrt{a}+3+\sqrt{a}-3}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}\cdot\dfrac{\sqrt{a}-3}{\sqrt{a}}\)
\(=\dfrac{2\sqrt{a}}{\sqrt{a}+3}\cdot\dfrac{1}{\sqrt{a}}\)
\(=\dfrac{2}{\sqrt{a}+3}\)
b) Để \(A>\dfrac{1}{2}\) thì \(A-\dfrac{1}{2}>0\)
\(\Leftrightarrow\dfrac{2}{\sqrt{a}+3}-\dfrac{1}{2}>0\)
\(\Leftrightarrow\dfrac{4-\left(\sqrt{a}+3\right)}{2\left(\sqrt{a}+3\right)}>0\)
mà \(2\left(\sqrt{a}+3\right)>0\forall a\)
nên \(1-\sqrt{a}>0\)
\(\Leftrightarrow\sqrt{a}< 1\)
hay a<1
Kết hợp ĐKXĐ, ta được: 0<a<1
\(\sqrt{\dfrac{a^3}{a}}=\sqrt{a^2}=\left|a\right|=-a\)