K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2019

Đáp án D.

Phương pháp: 

Hàm số bậc nhất trên bậc nhất y = a x + b c x + d ,   a , c , a d − c d ≠ 0  

TXĐ: x = − d c ,    T C N :    y = a c .  

Cách giải:

TXĐ: D = R \ 2  

y = 2 x − 3 x − 2    C  có 2 đường tiệm cận: x = 2 ,   y = 2  

Ta có y ' = − 1 x − 2 2  

Gọi M x 0 ; y 0 ,    x 0 ≠ 0  là tiếp điểm. Tiếp tuyến của (C) tại M có phương trình :

y = y ' x 0 x − x 0 + y 0 ⇔ y = − x − x 0 x 0 − 2 2 + 2 x 0 − 3 x 0 − 2    d  

Cho

x = 2 ⇒ y = 1 x 0 − 2 + 2 x 0 − 3 x 0 − 2 = 2 x 0 − 2 x 0 − 2 ⇒    d  

cắt TCĐ của (C) tại điểm

A 2 ; 2 x 0 − 2 x 0 − 2 .  

Cho

x = 2 ⇒ 2 = − x − x 0 x 0 − 2 2 + 2 x 0 − 3 x 0 − 2 ⇔ 2 x 0 − 2 2 = − x + x 0 + 2 x 0 − 3 x 0 − 2  

⇔ 2 x 0 2 − 8 x 0 + 8 = − x + x 0 + 2 x 0 2 − 7 x 0 + 6 ⇔ x = 2 x 0 − 2 ⇒    d  

cắt TCN của (C) tại điểm

B 2 x 0 − 2 ; 2  

Độ dài đoạn AB:

2 − 2 x 0 − 2 2 + 2 x 0 − 2 x 0 − 2 − 2 2 = 2 2 ⇔ 4 x 0 − 2 2 + 2 x 0 − 2 2 = 8  

⇔ x 0 − 2 4 − 2 x 0 − 2 2 + 1 = 0 ⇔ x 0 − 2 2 − 1 2 = 0 ⇔ x 0 − 2 2 = 1  

Hệ số góc của tiếp tuyến

y ' x 0 = − 1 x 0 − 2 2 = − 1 1 = − 1.  

20 tháng 7 2019

Đáp án D

22 tháng 6 2017

4 tháng 11 2019

Đáp án C.

Ta có I 2 ; 1 .

Tiếp tuyến với C  tại điểm M x 0 ; x 0 + 2 x 0 − 2  là d : y = − 4 x 0 − 2 2 x − x 0 + x 0 + 2 x 0 − 2

Tọa độ A là nghiệm của hệ

y = − 4 x 0 − 2 2 x − x 0 + x 0 + 2 x 0 − 2 x = 2 ⇒ y = 4 x 0 − 2 + x 0 + 2 x 0 − 2 ⇒ A 2 ; x 0 + 6 x 0 − 2 ⇒ I A → = 0 ; 8 x 0 − 2

Tọa độ B là nghiệm của hệ

y = − 4 x 0 − 2 2 x − x 0 + x 0 + 2 x 0 − 2 y = 2 ⇒ x 0 − 2 2 = − 4 x − x 0 + x 0 2 − 4 ⇒ B 2 x 0 − 2 ; 1 ⇒ I B → = 2 x 0 − 4 ; 0 Do đó C I A B = π . A B = π I A 2 + I B 2 ≥ π 2 I A . I B  

Mà I A . I B = 8 x 0 − 2 . 2 x 0 − 4 = 16 ⇒ C I A B ≥ 4 π 2  

14 tháng 12 2017

Đáp án A

 

 

 

 

 

 

 

 

 

 

22 tháng 12 2018

Đáp án C

6 tháng 6 2018

Đáp án là B

22 tháng 7 2019

Chọn A

 Phương trình tiếp tuyến tại điểm M là d: 

Đồ thị có hai tiệm cận có phương trình lần lượt là  d 1 : x = 1;  d 2 : y = 2

d cắt d 1  tại điểm 

d cắt d 2  tại điểm Q(2a-1;2),  d 1  cắt  d 2  tại điểm I(1;2)

Ta có 

4 tháng 11 2019

Đáp án A

Vì I là tâm đối xứng của đồ thị C ⇒ I 2 ; 2  

Gọi M x 0 ; 2 x 0 − 1 x 0 − 2 ∈ C ⇒ y ' x 0 = − 3 x 0 − 2 2  suy ra phương trình tiếp tuyến Δ  là

y − y 0 = y ' x 0 x − x 0 ⇔ y − 2 x 0 − 1 x 0 − 2 = − 3 x 0 − 2 2 x − x 0 ⇔ y = − 3 x 0 − 2 2 + 2 x 0 2 − 2 x 0 + 2 x 0 − 2 2  

Đường thẳng  Δ  cắt TCĐ tại A 2 ; y A → y A = 2 x 0 + 2 x 0 − 2 ⇒ A 2 ; 2 x 0 + 2 x 0 − 2  

Đường thẳng  Δ  cắt TCN tại B x B ; 2 → x B = 2 x 0 − 2 ⇒ B 2 x 0 − 2 ; 2  

Suy ra  I A = 6 x 0 − 2 ; I B = 2 x 0 − 2 → I A . I B = 6 x 0 − 2 .2 x 0 − 2 = 12

Tam giác IAB vuông tại I ⇒ R Δ I A B = A B 2 = I A 2 + I B 2 2 ≥ 2 I A . I B 2 = 6  

Dấu bằng xảy ra khi và chỉ khi  I A = I B ⇔ 3 = x 0 − 2 2 ⇔ x 0 = 2 + 3 x 0 = 2 − 3

Suy ra phương trình đường thẳng Δ  và gọi M, N lần lượt là giao điểm của Δ  với Ox, Oy

Khi đó  M 2 x 0 2 − 2 x 0 + 2 3 ; 0 , N 0 ; 2 x 0 2 − 2 x 0 + 2 3 ⇒ S Δ O M N = 1 2 O M . O N

Vậy S m a x = 14 + 8 3 ≈ 27 , 85 ∈ 27 ; 28   k h i  x 0 = 2 + 3

13 tháng 11 2018

Gọi M m ; 2 m + 1 m - 1 ∈ C . Tiếp tuyến với (C)tại M có dạng: y = - 3 m - 1 2 x - m + 2 m + 1 m - 1 d

d cắt tiệm cận đứng tại A 1 ; 2 m + 4 m - 1  và d cắt tiệm cận ngang tại B ( 2m - 1; 2 )

Suy ra trung điểm của AB là  N m ; 2 m + 1 m - 1 = M

Từ giả thiết bài toán ta có

I N 2 = 10 ⇔ m - 1 2 + 2 m + 1 m - 1 - 2 2 = 10 ⇔ m ∈ 0 ; 2 ; - 2 ; 4

Vậy có 4 điểm M cần tìm

Đáp án D