Cho hàm số y = 2 x − 3 x − 2 có đồ thị C . Một tiếp tuyến của C cắt hai tiệm cận của C tại hai điểm A, B và A B = 2 . Hệ số góc tiếp tuyến đó bằng
A. − 2 .
B. − 2.
C. − 1 2 .
D. − 1.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C.
Ta có I 2 ; 1 .
Tiếp tuyến với C tại điểm M x 0 ; x 0 + 2 x 0 − 2 là d : y = − 4 x 0 − 2 2 x − x 0 + x 0 + 2 x 0 − 2
Tọa độ A là nghiệm của hệ
y = − 4 x 0 − 2 2 x − x 0 + x 0 + 2 x 0 − 2 x = 2 ⇒ y = 4 x 0 − 2 + x 0 + 2 x 0 − 2 ⇒ A 2 ; x 0 + 6 x 0 − 2 ⇒ I A → = 0 ; 8 x 0 − 2
Tọa độ B là nghiệm của hệ
y = − 4 x 0 − 2 2 x − x 0 + x 0 + 2 x 0 − 2 y = 2 ⇒ x 0 − 2 2 = − 4 x − x 0 + x 0 2 − 4 ⇒ B 2 x 0 − 2 ; 1 ⇒ I B → = 2 x 0 − 4 ; 0 Do đó C I A B = π . A B = π I A 2 + I B 2 ≥ π 2 I A . I B
Mà I A . I B = 8 x 0 − 2 . 2 x 0 − 4 = 16 ⇒ C I A B ≥ 4 π 2
Chọn A
Phương trình tiếp tuyến tại điểm M là d:
Đồ thị có hai tiệm cận có phương trình lần lượt là d 1 : x = 1; d 2 : y = 2
d cắt d 1 tại điểm
d cắt d 2 tại điểm Q(2a-1;2), d 1 cắt d 2 tại điểm I(1;2)
Ta có
Đáp án A
Vì I là tâm đối xứng của đồ thị C ⇒ I 2 ; 2
Gọi M x 0 ; 2 x 0 − 1 x 0 − 2 ∈ C ⇒ y ' x 0 = − 3 x 0 − 2 2 suy ra phương trình tiếp tuyến Δ là
y − y 0 = y ' x 0 x − x 0 ⇔ y − 2 x 0 − 1 x 0 − 2 = − 3 x 0 − 2 2 x − x 0 ⇔ y = − 3 x 0 − 2 2 + 2 x 0 2 − 2 x 0 + 2 x 0 − 2 2
Đường thẳng Δ cắt TCĐ tại A 2 ; y A → y A = 2 x 0 + 2 x 0 − 2 ⇒ A 2 ; 2 x 0 + 2 x 0 − 2
Đường thẳng Δ cắt TCN tại B x B ; 2 → x B = 2 x 0 − 2 ⇒ B 2 x 0 − 2 ; 2
Suy ra I A = 6 x 0 − 2 ; I B = 2 x 0 − 2 → I A . I B = 6 x 0 − 2 .2 x 0 − 2 = 12
Tam giác IAB vuông tại I ⇒ R Δ I A B = A B 2 = I A 2 + I B 2 2 ≥ 2 I A . I B 2 = 6
Dấu bằng xảy ra khi và chỉ khi I A = I B ⇔ 3 = x 0 − 2 2 ⇔ x 0 = 2 + 3 x 0 = 2 − 3
Suy ra phương trình đường thẳng Δ và gọi M, N lần lượt là giao điểm của Δ với Ox, Oy
Khi đó M 2 x 0 2 − 2 x 0 + 2 3 ; 0 , N 0 ; 2 x 0 2 − 2 x 0 + 2 3 ⇒ S Δ O M N = 1 2 O M . O N
Vậy S m a x = 14 + 8 3 ≈ 27 , 85 ∈ 27 ; 28 k h i x 0 = 2 + 3
Gọi M m ; 2 m + 1 m - 1 ∈ C . Tiếp tuyến với (C)tại M có dạng: y = - 3 m - 1 2 x - m + 2 m + 1 m - 1 d
d cắt tiệm cận đứng tại A 1 ; 2 m + 4 m - 1 và d cắt tiệm cận ngang tại B ( 2m - 1; 2 )
Suy ra trung điểm của AB là N m ; 2 m + 1 m - 1 = M
Từ giả thiết bài toán ta có
I N 2 = 10 ⇔ m - 1 2 + 2 m + 1 m - 1 - 2 2 = 10 ⇔ m ∈ 0 ; 2 ; - 2 ; 4
Vậy có 4 điểm M cần tìm
Đáp án D
Đáp án D.
Phương pháp:
Hàm số bậc nhất trên bậc nhất y = a x + b c x + d , a , c , a d − c d ≠ 0 có
TXĐ: x = − d c , T C N : y = a c .
Cách giải:
TXĐ: D = R \ 2
y = 2 x − 3 x − 2 C có 2 đường tiệm cận: x = 2 , y = 2
Ta có y ' = − 1 x − 2 2
Gọi M x 0 ; y 0 , x 0 ≠ 0 là tiếp điểm. Tiếp tuyến của (C) tại M có phương trình :
y = y ' x 0 x − x 0 + y 0 ⇔ y = − x − x 0 x 0 − 2 2 + 2 x 0 − 3 x 0 − 2 d
Cho
x = 2 ⇒ y = 1 x 0 − 2 + 2 x 0 − 3 x 0 − 2 = 2 x 0 − 2 x 0 − 2 ⇒ d
cắt TCĐ của (C) tại điểm
A 2 ; 2 x 0 − 2 x 0 − 2 .
Cho
x = 2 ⇒ 2 = − x − x 0 x 0 − 2 2 + 2 x 0 − 3 x 0 − 2 ⇔ 2 x 0 − 2 2 = − x + x 0 + 2 x 0 − 3 x 0 − 2
⇔ 2 x 0 2 − 8 x 0 + 8 = − x + x 0 + 2 x 0 2 − 7 x 0 + 6 ⇔ x = 2 x 0 − 2 ⇒ d
cắt TCN của (C) tại điểm
B 2 x 0 − 2 ; 2
Độ dài đoạn AB:
2 − 2 x 0 − 2 2 + 2 x 0 − 2 x 0 − 2 − 2 2 = 2 2 ⇔ 4 x 0 − 2 2 + 2 x 0 − 2 2 = 8
⇔ x 0 − 2 4 − 2 x 0 − 2 2 + 1 = 0 ⇔ x 0 − 2 2 − 1 2 = 0 ⇔ x 0 − 2 2 = 1
Hệ số góc của tiếp tuyến
y ' x 0 = − 1 x 0 − 2 2 = − 1 1 = − 1.