Cho hàm số y = f (x) có bảng biến thiên:
Hàm số đạt cực tiểu tại điểm:
A. x = 0
B. x = 2
C. x = 1
D. x = 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dựa vào bảng biến thiên, ta thấy đạo hàm đổi dấu từ âm sang dương khi đi qua x=2 nên hàm số y=f(x) đạt cực tiểu tại điểm x=2
Chọn đáp án C.
Dựa vào bảng biến thiên suy ra hàm số đạt cực tiểu tại x = 0.
Chọn D
Xét hàm số .
Có
.
Ta lại có thì . Do đó thì .
thì . Do đó thì .
Từ đó ta có bảng biến thiên của như sau
Dựa vào bảng biến thiên, ta có
I. Hàm số có 3 điểm cực trị . LÀ MỆNH ĐỀ ĐÚNG.
II. Hàm số đạt cực tiểu tại LÀ MỆNH ĐỀ SAI.
III. Hàm số đạt cực đại tại LÀ MỆNH ĐỀ SAI.
IV. Hàm số đồng biến trên khoảng LÀ MỆNH ĐỀ ĐÚNG.
V. Hàm số nghịch biến trên khoảng LÀ MỆNH ĐỀ SAI.
Vậy có hai mệnh đề đúng.
ở chỗ x<1=> x= -2 thì sao bạn ơi =>(x^2 -3) =1 >0 thì sao f ' (...)>0 được ????
Đáp án A
Phương pháp:
Dựa vào khái niệm cực trị và các kiến thức liên quan.
Cách giải:
(1) chỉ là điều kiện cần mà không là điều kiện đủ.
VD hàm số y = x3 có y' = 3x2 = 0 ⇔ x = 0. Tuy nhiên x = 0 không là điểm cực trị của hàm số.
(2) sai, khi f''(x0) = 0, ta không có kết luận về điểm x0 có là cực trị của hàm số hay không.
(3) hiển nhiên sai.
Vậy (1), (2), (3): sai; (4): đúng
Đáp án A
Phương pháp: Hàm số đạt cực tiểu tại điểm x = x 0 ⇔ y ' x 0 = 0 và qua x 0 thì y' đổi dấu từ âm sáng dương.
Cách giải: Dựa vào BBT ta dễ thấy x = 0 là điểm cực tiểu của hàm số y = f (x ).
Chú ý và sai lầm: Hàm số đạt cực tiểu tại x = 0, rất nhiều học sinh kết luận sai hàm số đạt cực tiểu tại x = 1. Phân biệt điểm cực tiểu và giá trị cực tiểu của hàm số.