K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2019

Đáp án D.

Phương pháp: 

Phương pháp tìm GTLN, GTNN của hàm số y = f x  trên a ; b .  

+) Giải phương trình f ' x = 0 ⇒  các nghiệm x 1 ∈ a ; b .  

+) Tính các giá trị

f a ;   f b ;   f x i .  

+) So sánh và kết luận:

m a x a ; b y = m a x f a ; f b ; f x i ;   min a ; b y = min f a ; f b ; f x i  

Cách giải:

ĐKXĐ: x > 0.  

y = x − 3 ln x ⇒ y ' = 1 − 3 x = 0 ⇔ x = 3 ∉ 1 ; e  

y 1 = 1 ;   y e = e − 3 ⇒ min 1 ; e = e − 3

 

1 tháng 10 2018

16 tháng 8 2017

Đáp án A

Ta có:  y ' = 1 − 1 x = 0 ⇔ x − 1 x = 0 ⇔ x = 1  . Ta có  y 1 2 = 1 2 + ln 2 ;   y 1 = 1 ;   y e = e − 1

⇒ M a x y = e − 1 ;   M i n y = 1

9 tháng 9 2018

23 tháng 9 2017

Chọn B

8 tháng 3 2017

min f(x) = f(1) = 4. Không có giá trị lớn nhất.

13 tháng 1 2017

Đáp án A

3 tháng 1 2019

Chọn B

16 tháng 5 2016
 \(f\left(x\right)=\frac{\ln^2x}{x}\) trên đoạn \(\left[1;e^3\right]\) Ta có : \(f'\left(x\right)=\frac{2\ln x.\frac{1}{x}x-\ln^2x}{x^2}=\frac{2\ln x-\ln^2x}{x^2}=0\Leftrightarrow2\ln x-\ln^2x=0\)\(\Leftrightarrow\left[\begin{array}{nghiempt}\ln x=0\\\ln x=2\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=e^2\end{array}\right.\)Mà :\(\begin{cases}f\left(1\right)=0\\f\left(e^2\right)=\frac{4}{e^2}\\f\left(e^3\right)=\frac{9}{e^3}\end{cases}\)\(\Leftrightarrow\begin{cases}Max_{x\in\left[1;e^3\right]}f\left(x\right)=\frac{4}{e^2};x=e^2\\Min_{x\in\left[1;e^3\right]}f\left(x\right)=0;x=1\end{cases}\)
30 tháng 4 2017