Cho mặt phẳng (α) có phương trình: 3x + 5y - z - 2 = 0 và đường thẳng d có phương trình: x = 12 + 4 t y = 9 + 3 t z = 1 + t
Viết phương trình mặt phẳng β chứa điểm M và vuông góc với đường thẳng d.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M ∈ d ⇒ M(12 + 4t; 9 +3t; 1 + t).
M ∈ α ⇒ 3.(12 + 4t) + 5.(9 + 3t) – (1 + t) – 2 = 0
⇔ 26t + 78 = 0.
⇔ t = -3.
⇒ M(0; 0; -2).
Chọn A
Tìm tọa độ giao điểm M bằng cách giải hệ. Mặt phẳng (P) cần tìm qua điểm M và nhận vecto chỉ phương của d làm vecto pháp tuyến.
Câu 1:
a) Ta có: \(x^4+3x^2-4=0\)
\(\Leftrightarrow x^4+4x^2-x^2-4=0\)
\(\Leftrightarrow x^2\left(x^2+4\right)-\left(x^2+4\right)=0\)
\(\Leftrightarrow\left(x^2+4\right)\left(x^2-1\right)=0\)
mà \(x^2+4>0\forall x\)
nên \(x^2-1=0\)
\(\Leftrightarrow x^2=1\)
hay \(x\in\left\{1;-1\right\}\)
Vậy: S={1;-1}
Câu 1:
b) Ta có: \(\left\{{}\begin{matrix}x+2y=5\\x-5y=-9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7y=14\\x+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=5-2y=1\end{matrix}\right.\)
Vậy: (x,y)=(1;2)
Đáp án B
Phương pháp giải:
Ứng dụng của tích có hướng để tìm vectơ pháp tuyến của mặt phẳng. Phương trình mặt phẳng đi qua M ( x 0 ; y 0 ; z 0 ) và có VTPT
Lời giải:
Vậy phương trình mặt phẳng (P): 2x-3y-z+7=0
(β) vuông góc với d
⇒ (β) nhận vtcp của d là 1 vtpt.
(β) đi qua M(0; 0; -2)
⇒ (β): 4x + 3y + z + 2 = 0.