K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2019

Chọn B.

Phương pháp:

Sử dụng dấu hiệu nhận biết của tứ giác nội tiếp.

Cách giải:

Khi đó,

Vậy tập hợp S tất cả các giá trị của tham số m thỏa mãn yêu cầu đề bài có 2 phần tử là  ± 1 5 .

17 tháng 7 2018

Đáp án C

Đồ thị hàm số đã cho có 5 điểm cực trị khi và chỉ khi phương trình y’ = 0 có 5 nghiệm phân biệt và y’ đổi dấu qua 5 nghiệm đó, điều này tương đương với   x 3 - 3 x 2 + m có ba nghiệm phân biệt khác 0 và 2 

26 tháng 6 2017



4 tháng 12 2019

Đáp án là A

9 tháng 9 2019

Đáp án B

1 tháng 10 2018

Chọn C

19 tháng 6 2021

Sao lại bằng -3 được ạ? 

23 tháng 6 2017

Đáp án A.

Phương pháp: Suy ra cách vẽ của đồ thị hàm số y = |f(x – 1) + m| và thử các trường hợp và đếm số cực trị của đồ thị hàm số. Một điểm được gọi là cực trị của hàm số nếu tại đó hàm số liên tục và đổi chiều. 

Cách giải: Đồ thị hàm số y = f(x – 1) nhận được bằng cách tịnh tiến đồ thị hàm số y = f(x) sang phải 1 đơn vị nên không làm thay đổi tung độ các điểm cực trị

Đồ thị hàm số y = f(x – 1) + m nhận được bằng cách tịnh tiến đồ thị hàm số y = f(x – 1) lên trên m đơn vị nên ta có: yCD = 2 + m; yCT = –3 + m; yCT = –6 + m

Đồ thị hàm số y = |f(x – 1) + m| nhận được bằng cách từ đồ thị hàm số y = f(x – 1) + m lấy đối xứng phần đồ thị phía dưới trục hoành qua trục hoành và xóa đi phần đồ thị phía dưới trục hoành.

Để đồ thị hàm số có 5 cực trị 

=>S = {3;4;5} => 3+4+5 = 12

27 tháng 3 2017

24 tháng 11 2018

Vậy tổng các giá trị tuyệt đối của tất cả các phần tử thuộc S là 1.

Chọn C

20 tháng 4 2018

Chọn đáp án C.