Cho hàm số y = f(x) xác định trên R \ {1}, liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:
Số giá trị nguyên của tham số m để phương trình f(x) = m có 3 nghiệm thực phân biệt là
A. 0.
B. 3.
C. 2.
D. 1.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
Số nghiệm phương trình f(x) = m là số giao điểm của hai đường y = f(x) và y = m.
Phương trình có 3 nghiệm thực phân biệt khi đường thẳng y = m cắt đồ thị y= f(x) tại ba điểm phân biệt.
Dựa vào bảng biến thiên có .
Đáp án A.
Ta có f x − m = 0 ⇔ f x = m . Số nghiệm của phương trình là số giao điểm của đồ thị hàm số y = f x và đường thẳng y = m .Do đó để phương trình đã cho có nghiệm duy nhất thì đường thẳng y = m phải cắt đồ thị hàm số y = f x tại một điểm duy nhất. Khi đó m ∈ 3 ; + ∞ .
Đáp án C
Dựa vào bảng biến thiên của đồ thị hàm số ⇒ f ( x ) = 3 m có 3 nghiệm phân biệt khi và chỉ khi 3 m ≤ − 3 ⇔ m ≤ − 1