Trong không gian O x y z , cho mặt cầu S : x + 1 2 + y − 2 2 + z + 3 2 = 1 . Mặt cầu S có tâm I là I 1 ; − 2 ; 3
A. I 1 ; − 2 ; 3 .
B. I 1 ; 2 ; − 3 .
C. I − 1 ; 2 ; − 3 .
D. I − 1 ; 2 ; 3 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Mặt cầu (S) có tâm I(-1;4;-3) và có bán kính R = 6. Gọi H là hình chiếu vuông góc của I trên trục Ox. Ta có H(-1;0;0) và IH=5.
Gọi K là hình chiếu vuông góc của I trên mặt phẳng (P). Ta có
d(I; (P)) = IK ≤ IH = 5 < R = 6
Do đó mặt phẳng (P) luôn cắt mặt cầu (S) theo một đường tròn. Vậy không tồn tại mặt phẳng (P) chứa Ox và tiếp xúc với (S)
Đáp án C
Mặt cầu (S) có tâm I(a; b; c) và bán kính R thì có phương trình (x-a)²+(y-b)²+(z-c)²=R².
Theo đề bài ta có R²=9=> R=3.
Đáp án A
Mặt cầu (S): (x-a)²+(y-b)²+(z-c)²=R² có tâm là I(a;b;c) và bán kính là R.
Do đó, mặt cầu (S): (x-1)²+(y+2)²+z²=25 có tâm I(1;-2;0) và bán kính R=5.