Tính diện tích mặt cầu ngoại tiếp hình lập phương có độ dài đường chéo bằng 4a
A. 64 π a 2
B. 16 π a
C. 16 π a 2
D. 8 π a 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A.
(h.14) Gọi O, O' là hai tâm của hai đáy hình trụ và thiết diện qua trục là hình chữ nhật ABCD.
Do chu vi đáy của hình trụ đó bằng 6 π (cm) nên bán kính đáy của hình trụ là: R = 3 (cm)
Vì thiết diện đi qua trục là một hình chữ nhật ABCD có AC = 10 (cm) và AB = 2R = 6 (cm) nên chiều cao của hình trụ là:
h = OO' = BC = 8 (cm)
Vậy thể tích khối trụ là: V = π R 2 h = 72 π ( cm 3 )
Chọn B
Gọi a là cạnh của hình lập phương ta có hình trụ tròn xoay ngoại tiếp hình lập phương đó có bán kính đáy r = (a 2 )/2 và chiều cao h = a.
Suy ra:
Chọn A.
Gọi 2a là cạnh của hình lập phương thì hình cầu nội tiếp hình lập phương đó có bán kính r = a.
Suy ra:
Chọn A.
Đường kính của mặt cầu (S) chính là đường chéo của hình hộp chữ nhật, nên mặt cầu (S) có bán kính
Do đó diện tích mặt cầu (S) là: S = 4 πr 2 = π( a 2 + b 2 + c 2 )
Xem Hình II.5G.
Trước hết ta tìm số vân cực đại trên toàn mặt thoáng. Đó cũng là số vân cực đại trên đoạn AB. Vì hai nguồn kết hợp dao động ngược pha nên ta có :
d 1 - d 2 = (k + 1/2) λ
Vì 0 < d 2 < 20 (cm) ⇒ k = -13,..., -12, -1,0, 1.., 12
Bây giờ ta xét số vân cực đại trên đoạn BM.
-20 < d 2 - d 1 < 20( 2 - 1)(cm)
-20 < (k + 1/2).3/2 ≤ 2 - ( 2 - 1)
⇒ k = -13, -12 ...-1.0, 1,..., 5 ⇒ 19 điểm.
Gọi O là tâm đáy \(\Rightarrow AO=\dfrac{a\sqrt{3}}{3}\)
\(SA=\dfrac{AO}{cos60^0}=\dfrac{2a\sqrt{3}}{3}\)
\(SO=\sqrt{SA^2-AO^2}=a\)
\(\Rightarrow R=\dfrac{SA^2}{2SO}=\dfrac{2a}{3}\)
\(V=\dfrac{4}{3}\pi R^3=\dfrac{32\pi a^3}{81}\)
\(\Rightarrow\dfrac{V}{\pi a^3}=\dfrac{32}{81}\)
Đáp án C
Bán kính mặt cầu là R = 4 a : 2 = 2 a
Diện tích mặt cầu là S = 4 π R 2 = 4 π 2 a 2 = 16 π a 2