Bài 1Cho A(-1,4) B(2,5) và C (-3,0)
A) Chứng minh A , B và C ko thẳng hàng
B) Tìm tọa độ điểm M sao cho B là trung điểm của AM
C) Tìm tọa độ điểm D sao cho tứ giác ACMD là hình bình hành
D) Tìm điểm E sao cho vecto EB-2EC = vecto 0
ai giải giúp em bài này với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\overrightarrow{AB}=\left(-1;2\right);\overrightarrow{AC}=\left(-5;3\right);\overrightarrow{BC}=\left(-4;1\right)\)
Vì -1/-5<>2/3
nên A,B,C ko thẳng hàng
=>A,B,C là ba đỉnh của 1 tam giác
b: \(AB=\sqrt{\left(-1\right)^2+2^2}=\sqrt{5}\)
\(AC=\sqrt{\left(-5\right)^2+3^2}=\sqrt{34}\)
\(BC=\sqrt{\left(-4\right)^2+1^2}=\sqrt{17}\)
\(C=\sqrt{5}+\sqrt{34}+\sqrt{17}\left(cm\right)\)
\(cosBAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\simeq0,844\)
=>sinBAC=0,54
\(S_{ABC}=\dfrac{1}{2}\cdot\sqrt{5}\cdot\sqrt{34}\cdot0.36\simeq2.35\left(cm^2\right)\)
c: ADBC là hình bình hành
=>vecto AD=vecto CB
=>x-3=2-(-2) và y+1=1-2
=>x-3=2+2 và y=-2
=>x=7 và y=-2
a: A(2;4); B(1;0); C(2;2)
vecto AB=(-1;-4)
vecto DC=(2-x;2-y)
Vì ABCD là hình bình hành nên vecto AB=vecto DC
=>2-x=-1 và 2-y=-4
=>x=3 và y=6
c: N đối xứng B qua C
=>x+1=4 và y+0=4
=>x=3 và y=4
a.
\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-1;8\right)\\\overrightarrow{AC}=\left(3;6\right)\end{matrix}\right.\) mà \(\dfrac{-1}{3}\ne\dfrac{8}{6}\Rightarrow\overrightarrow{AB}\) và \(\overrightarrow{AC}\) không cùng phương hay A,B,C không thẳng hàng
\(\Rightarrow A,B,C\) là 3 đỉnh của 1 tam giác
b.
Theo công thức trung điểm: \(\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_C}{2}=\dfrac{1+4}{2}=\dfrac{5}{2}\\y_I=\dfrac{y_A+y_C}{2}=\dfrac{-3+3}{2}=0\end{matrix}\right.\)
\(\Rightarrow C\left(\dfrac{5}{2};0\right)\)
Gọi G là trọng tâm tam giác, theo công thức trọng tâm:
\(\left\{{}\begin{matrix}x_G=\dfrac{x_A+x_B+x_C}{3}=\dfrac{1+0+4}{3}=\dfrac{5}{3}\\y_G=\dfrac{y_A+y_B+y_C}{3}=\dfrac{-3+5+3}{3}=\dfrac{5}{3}\\\end{matrix}\right.\) \(\Rightarrow G\left(\dfrac{5}{3};\dfrac{5}{3}\right)\)
c.
Gọi \(D\left(x;y\right)\Rightarrow\overrightarrow{DC}=\left(4-x;3-y\right)\)
ABCD là hình bình hành khi \(\overrightarrow{AB}=\overrightarrow{DC}\)
\(\Rightarrow\left\{{}\begin{matrix}4-x=-1\\3-y=8\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=5\\y=-5\end{matrix}\right.\)
\(\Rightarrow D\left(5;-5\right)\)
a) \(\overrightarrow{AB}\left(2;2\right);\overrightarrow{AC}\left(2;-2\right)\) . Vì \(\frac{2}{2}\ne\frac{2}{-2}\) nên \(\overrightarrow{AB};\overrightarrow{AC}\) không cùng phương => A; B; C không thẳng hàng
b) Gọi G là trọng tâm tam giác ABC => \(\begin{cases}x_G=\frac{x_A+x_B+x_C}{3}=\frac{-1+1+1}{3}=\frac{1}{3}\\y_G=\frac{y_A+y_B+y_C}{3}=\frac{1+3+\left(-1\right)}{3}=1\end{cases}\)=> G(1/3; 1)
c) ABCD là hình bình hành <=> \(\overrightarrow{AD}=\overrightarrow{BC}\Leftrightarrow\begin{cases}x_D-x_A=x_C-x_B\\y_D-y_A=y_C-y_B\end{cases}\) <=> \(\begin{cases}x_D+1=0\\y_D-1=-4\end{cases}\) <=> \(\begin{cases}x_D=-1\\y_D=-3\end{cases}\) Vậy D (-1;-3)
d) \(\overrightarrow{AB}\left(2;2\right);\overrightarrow{AC}\left(2;-2\right)\)
=> \(\overrightarrow{AB}.\overrightarrow{AC}=2.2+2.\left(-2\right)=0\) => \(\overrightarrow{AB};\overrightarrow{AC}\) vuông góc với nhau => tam giác ABC vuông tại A
Ta có: AB2 = 22 + 22 = 8 ; AC2 = 22 + (-2)2 = 8 => AB = AC => Tam giác ABC cân tại A
vậy...
e) Có thể đề của bạn là tam giác ABE vuông cân tại E ( Khi đó giải điều kiện: EA = EB và vec tơ EA . Vec tơ EB = 0)
g) M nằm trên Ox => M (m; 0)
Tam giác OMA cân tại O <=> OM = OA Hay OM2 = OA2 <=> m2 = (-1)2 + 12 => m2 = 2 <=> m = \(\sqrt{2}\) hoặc m = - \(\sqrt{2}\)
Vậy M (\(\sqrt{2}\); 0) ; M (-\(\sqrt{2}\); 0 )
Tham khảo
a,⇒C,A,Da,⇒C,A,D thẳngthẳng hàng⇒−−→CA+−−→CD=→0⇔−−→CA=−−→DChàng⇒CA→+CD→=0→⇔CA→=DC→
D(x;y)⇒−−→CA=−−→DC⇔{−1−x=2−2−y=0D(x;y)⇒CA→=DC→⇔{−1−x=2−2−y=0⇔{x=−1y=−2⇔{x=−1y=−2⇔{x=−3y=−2⇔{x=−3y=−2⇒D(−3;−2)⇒D(−3;−2)
b,E(xo;yo)⇒−−→AE=−−→BCb,E(xo;yo)⇒AE→=BC→⇔{xo−1=−3yo+2=−5⇔{xo−1=−3yo+2=−5⇔{xo=−2yo=−7⇔{xo=−2yo=−7⇒E(−2;−7)⇒E(−2;−7)
c,⇒G(xG;yG)⇒⎧⎪ ⎪⎨⎪ ⎪⎩xG=1+2−13=23yG=−2+3−23=−13c,⇒G(xG;yG)⇒{xG=1+2−13=23yG=−2+3−23=−13⇒G(23;−13)
bạn ơi bạn có thể viết rõ câu trả lời hơn được không vì nó khó hiểu quá