giúp mk giải câu này với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(I=\int\dfrac{2}{2+5sinxcosx}dx=\int\dfrac{2sec^2x}{2sec^2x+5tanx}dx\\ =\int\dfrac{2sec^2x}{2tan^2x+5tanx+2}dx\)
We substitute :
\(u=tanx,du=sec^2xdx\\ I=\int\dfrac{2}{2u^2+5u+2}du\\ =\int\dfrac{2}{2\left(u+\dfrac{5}{4}\right)^2-\dfrac{9}{8}}du\\ =\int\dfrac{1}{\left(u+\dfrac{5}{4}\right)^2-\dfrac{9}{16}}du\\ \)
Then,
\(t=u+\dfrac{5}{4}\\I=\int\dfrac{1}{t^2-\dfrac{9}{16}}dt\\ =\int\dfrac{\dfrac{2}{3}}{t-\dfrac{3}{4}}-\dfrac{\dfrac{2}{3}}{t+\dfrac{3}{4}}dt\)
Finally,
\(I=\dfrac{2}{3}ln\left(\left|\dfrac{t-\dfrac{3}{4}}{t+\dfrac{3}{4}}\right|\right)+C=\dfrac{2}{3}ln\left(\left|\dfrac{tanx+\dfrac{1}{2}}{tanx+2}\right|\right)+C\)
(Mình chỉ giải câu c) theo yêu cầu thôi nhé ! :))
c) Ta có: AICK là hình bình hành (câu a)
Để AICK là hình thoi thì AC phải vuông góc với KI (2 đường chéo vuông góc với nhau)
mà KI // BC (BIKC là hình bình hành)
<=>AC vuông góc với BC
<=>tam giác ABC vuông tại C
\(=120:\left\{54-\left[25-9+8\right]\right\}\)
=120:(54-25+9-8)
=120:30
=4
Gọi biểu thức trên là A, ta có:
\(A=\frac{1}{2\cdot15}+\frac{1}{15\cdot3}+\frac{1}{3\cdot21}+\frac{1}{21\cdot4}+...+\frac{1}{87\cdot90}\)
\(13A=\frac{13}{2\cdot15}+\frac{13}{15\cdot3}+\frac{13}{3\cdot21}+\frac{13}{21\cdot4}+...+\frac{13}{87\cdot90}\)
\(13A=\frac{1}{2}-\frac{1}{15}+\frac{1}{15}-\frac{1}{3}+\frac{1}{3}-\frac{1}{21}+\frac{1}{21}-\frac{1}{4}+...+\frac{1}{87}-\frac{1}{90}\)
\(13A=\frac{1}{2}-\frac{1}{90}\)
\(13A=\frac{22}{45}\)
\(A=\frac{22}{45\text{x}13}=\frac{22}{585}\)