6. Từ một điểm A ở ngoài đường tròn (C) R) vẽ hai tiếp tuyến AB, AC với đường tròn (F. C là tiếp điểm). Gọi H là giao điểm của OA và BC. (a) Chứng minh bản điểm A. B.0, C cùng nằm trên một đường tròn và ĐA vuông Đốc với BC. (b) Kẻ đường kính CD của đường tròn (C). AD cắt đường tròn (O) tại E. Chung minh CE vuông góc với ADvaDADL = 4OA * O_{B} (c) Kẻ OK vuông góc với D£ tại K. AD cắt BC tại F. Biết 2: 6/cm) và DA 6V5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi M là trung điểm của OA
Ta có: ΔOBA vuông tại B(OB⊥BA)
mà BM là đường trung tuyến ứng với cạnh huyền OA(M là trung điểm của OA)
nên \(BM=\dfrac{OA}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(1)
Ta có: ΔOCA vuông tại C(OC⊥CA)
mà CM là đường trung tuyến ứng với cạnh huyền OA(M là trung điểm của OA)
nên \(CM=\dfrac{OA}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(2)
Ta có: M là trung điểm của OA(gt)
nên \(OM=AM=\dfrac{OA}{2}\)(3)
Từ (1), (2) và (3) suy ra MA=MB=MO=MC
hay A,B,O,C cùng thuộc một đường tròn(đpcm)
b) Xét (O) có
AB là tiếp tuyến có B là tiếp điểm(gt)
AC là tiếp tuyến có C là tiếp điểm(gt)
Do đó: AB=AC(Tính chất hai tiếp tuyến cắt nhau)
Ta có: AB=AC(cmt)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: OB=OC(=R)
nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
⇔OA⊥BC
mà OA cắt BC tại H(gt)
nên OA⊥BC tại H(đpcm)
a: Xét (O) có
ΔCED nội tiếp
CD là đườngkính
=>ΔCED vuông tại E
Xét (O) có
AB,AC là tiếp tuyến
nên AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc với BC
b: Xét ΔACD vuông tại C có CE là đường cao
nên AE*AD=AC^2
=>AE*AD=AH*AO
=>AE/AO=AH/AD
=>ΔAEH đồng dạng với ΔAOD
=>góc AHE=góc ADO
a: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó AB=AC
hay A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC