K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2018

Đáp án B.

t = x + 1 − x 2 + 1 ≥ 0 ⇒ t 2 = 1 + 2 x 1 − x 2 = 1 + 2 x 2 − x 4 ⇒ m ≤ t 2 − 1 + t + 2 t + 1 = t + 1 t + 1 = f t

Ta có t 2 ≥ 1 ⇒ t ≥ 1 mà  t ≤ 2 x 2 + 1 − x 2 = 2 ⇒ t ∈ 1 ; 2

Khi đó f ' t = 1 − 1 t + 1 > 0 , ∀ t ∈ 1 ; 2 ⇒ f t  đồng biến trên 1 ; 2  

⇒ m ≤ f 2 = 2 2 − 1 ⇒ T = 1  

11 tháng 3 2021

undefined

11 tháng 3 2021

undefined

Bài 3: Tìm m để bất phương trình: x2 - 2x + 1 - m2 ≤ 0 nghiệm đúng với ∀x ∈ [1; 2].                 Bài 4: Tìm m để bất phương trình: (m - 1)x2 + (2 - m)x- 1 > 0 có nghiệm đúng với mọi∀x ∈ (1; 2).                                                                                                                                     Bài 5: Tìm m để bất phương trình: 3(m - 2)x2 + 2(m + 1)x + m - 1 < 0 có nghiệm đúngvới mọi ∀x ∈ (-1; 3).                             ...
Đọc tiếp

Bài 3: Tìm m để bất phương trình: x2 - 2x + 1 - m2 ≤ 0 nghiệm đúng với ∀x ∈ [1; 2].                 Bài 4: Tìm m để bất phương trình: (m - 1)x2 + (2 - m)x- 1 > 0 có nghiệm đúng với mọi∀x ∈ (1; 2).                                                                                                                                     Bài 5: Tìm m để bất phương trình: 3(m - 2)x2 + 2(m + 1)x + m - 1 < 0 có nghiệm đúngvới mọi ∀x ∈ (-1; 3).                                                                                                                          Bài 6: Tìm m để bất phương trình m2 - 2mx + 4 > 0 có nghiệm đúng với mọi ∀x ∈ (-1;0,5)

0
6 tháng 4 2020

hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

7 tháng 4 2020

,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

29 tháng 3 2022

chọn bừa ? 

chọn bừa là coi như xong ak ?

k bt lm thì đừng cố tình khiến ngta lm sai 

29 tháng 3 2022

giúp thì phải có tâm đi

đừng chọn bừa để ngta lm sai, ko muốn thì cx chả ai bắt đâu

3 tháng 12 2018

a, ĐK để pt có nghiệm \(\Delta'\ge0\Leftrightarrow9\left(m-2\right)^2-m\left(4m-7\right)\ge0\) 

                                                 \(\Leftrightarrow9\left(m^2-4m+4\right)-4m^2+7m\ge0\)

                                                \(\Leftrightarrow9m^2-36m+36-4m^2+7m\ge0\) 

                                                \(\Leftrightarrow5m^2-29m+36\ge0\)

                                                 \(\Leftrightarrow\orbr{\begin{cases}x\le\frac{9}{5}\\x\ge4\end{cases}}\)

Vì pt có một nghiệm x1 = 2 nên

\(m.2^2+6\left(m-2\right).2+4m-7=0\)

\(\Leftrightarrow4m^2+12m-24+4m-7=0\)

\(\Leftrightarrow4m^2+16m-31=0\)(*)

Xét \(\Delta'_m=64+4.31=188>0\)

=> pt (*) có 2 nghiệm phân biệt 

         \(m_1=\frac{-16-\sqrt{188}}{8}\)

       \(m_2=\frac{-16+\sqrt{188}}{8}\)

Bài này nghiệm xấu quá nên mk ko làm tiếp nữa :( Nếu cố tình làm tiếp thì bạn hãy xét 2 trường hợp của m rồi thay vào pt bạn đầu . Sau đó xét delta rồi dùng công thức nghiệm sẽ tìm đc x

b, Theo Vi-et \(\hept{\begin{cases}x_1+x_2=\frac{-b}{a}=\frac{6\left(2-m\right)}{m}=\frac{12-6m}{m}\\x_1.x_2=\frac{c}{a}=\frac{4m-7}{m}\end{cases}}\)

Do -2 < x1 < x2 < 4

Nên \(\hept{\begin{cases}x_1+2>0\\x_2-4< 0\end{cases}\Rightarrow\left(x_1+2\right)\left(x_2-4\right)< 0}\)

                                  \(\Leftrightarrow x_1x_2-4x_1+2x_2-8< 0\)

     Đến đây thì dễ rồi ! Bạn cố thay thế các kiểu để bpt này chỉ còn ẩn m rồi quy đồng lên giải . Nhớ kết hợp đk của m ở câu a nx . Muộn r ngủ đây pp

10 tháng 3 2022

\(f\left(x\right)=\left(3m-4\right)x^2-2\left(m-2\right)x+m-1< 0\)

\(TH1:3m-4=0\Leftrightarrow m=\dfrac{4}{3}\Rightarrow f\left(x\right)=\dfrac{4}{3}x+\dfrac{1}{3}< 0\Leftrightarrow x< -\dfrac{1}{4}\left(ktm\right)\)

\(TH2:3m-4>0\Leftrightarrow m>\dfrac{4}{3}\Rightarrow f\left(x\right)< 0\forall x>1\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\\x1\le1< x2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m-2\right)^2-\left(m-1\right)\left(3m-4\right)>0\\\left(x1-1\right)\left(x2-1\right)\le0\Leftrightarrow x1.x2-\left(x1+x2\right)+1\le0\\\\\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}0< m< \dfrac{3}{2}\\\dfrac{m-1}{3m-4}-\dfrac{2\left(m-2\right)}{3m-4}+1\le0\Leftrightarrow\dfrac{1}{2}\le m< \dfrac{4}{3}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{1}{2}\le m< \dfrac{4}{3}\left(màm>\dfrac{4}{3}\right)\Rightarrow loại\)

\(TH3:3m-4< 0\Leftrightarrow m< \dfrac{4}{3}\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\Delta'=0\Leftrightarrow m=0\left(tm\right)\\x=\dfrac{2\left(m-2\right)}{3m-4}=\dfrac{1}{2}\notin\left(1;+\infty\right)\left(tm\right)\end{matrix}\right.\\\Delta'< 0\Leftrightarrow\left[{}\begin{matrix}m< 0\\m>\dfrac{3}{2}\end{matrix}\right.\\x1< x2\le1\left(1\right)\\\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\Leftrightarrow0< m< \dfrac{3}{2}\\\left(x1-1\right)\left(x2-1\right)\ge0\\x1+x2-2< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}0< m< \dfrac{3}{2}\\\dfrac{m-1}{3m-4}-\dfrac{2\left(m-2\right)}{3m-2}+1\ge0\\\dfrac{2\left(m-2\right)}{3m-4}-2< 0\end{matrix}\right.\)

\(\Leftrightarrow0< m\le\dfrac{1}{2}\)

\(\Rightarrow\left[{}\begin{matrix}m\le0\\0< m\le\dfrac{1}{2}\end{matrix}\right.\)

 

11 tháng 3 2022

thay \(\dfrac{1}{2}\) vào ra x<1/5 hoặc x>1 chứ có phải Vx>1 đâu ạ

 

24 tháng 7 2021

\(\left|x-5\right|=2x\)ĐK : x>=0 

TH1 : x - 5 = 2x <=> x = -5 ( loại )

TH2 : x - 5 = -2x <=> 3x = 5 <=> x = 5/3 ( tm )

Vậy tập nghiệm pt là S = { 5/3 } 

\(\left(x-2\right)^2+2\left(x-1\right)\le x^2+4\)

\(\Leftrightarrow x^2-4x+4+2x-2-x^2-4\le0\)

\(\Leftrightarrow-2x-2\le0\Leftrightarrow x+1\ge0\Leftrightarrow x\ge-1\)

Vậy tập nghiệm bft là S = { x | x > = -1 } 

Ta có: \(\left|x-5\right|=2x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=2x\left(x\ge5\right)\\x-5=-2x\left(x< 5\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-2x=5\\x+2x=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-x=5\\3x=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\left(loại\right)\\x=\dfrac{5}{3}\left(nhận\right)\end{matrix}\right.\)

10 tháng 2 2019

 Thử trực tiếp ta thấy ngay x = -3 là nghiệm của bất phương trình (1) nhưng không là nghiệm bất phương trình (2), vì vậy (1) và (2) không tương đương do đó phép bình phương hai vế một bất phương trình không phải là phép biến đổi tương đương.