trong mặt phẳng với hệ tọa độ Oxy cho đường thẳng d có pt:y=(m-1)x+n
a.với giá trị nào của m và n thì d song song với trục Ox
b.xác định pt của d biết d đi qua điểm A(1;-1) và có hệ số góc bằng -3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Trục Ox là đường thẳng y = 0
Để d // Ox <=> m - 1 = 0 và n \(\ne\) 0
<=> m = 1 và n \(\ne\) 0
b) d có hệ số góc = 3 => m - 1 = 3 <=> m = 4
=> d có dạng y = 3x + n
A (1; -1) \(\in\) d => yA = 3 xA + n <=> - 1 = 3.1 + n <=> n = -4
Vậy d có dạng y = 3x - 4
1 . Để đường thẳng (d) song song với trục Ox thì :
\(\left\{{}\begin{matrix}m-1=0\\n\in R\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=1\\n\in R\end{matrix}\right.\)
2 . Đường thẳng (d) đi qua điểm \(A\left(1;-1\right)\) nên ta có :
\(-1=\left(m-1\right)+n\Leftrightarrow m+n=0\)
Đường thẳng (d) có tung độ gốc bằng -3 \(\Rightarrow n=-3\) nên \(m=3\)
Vậy đường thẳng (d) có dạng : \(y=2x-3\)
1)
trục Ox là đt' y=0
để d//với Ox làm bình thường
a=a'<=>m-1=0<=>m=1
và b=b'<=>-n khác 0<=>n khác 0
Vậy m=1 và n khác 0 là giá trị cần tìm
2)
phương trình đường thẳng d :y=(m-1)x-n
do d đi qua A(1;-1) va có hệ số góc =-3 nên ta có a=-3;x=1;y=-1
thay vào hàm số d ta được -1=-3.1-n <=>n=-2
vậy hàm số có dạng y=-3x-2
a: Đường thẳng Ox có phương trình tổng quát là:
0x+y+0=0
=>y=0x+0
Để Ox//(d) thì m-1=0 và n<>0
=>m=1 và n<>0
b: Vì hệ số góc là -3 nên m-1=-3
hay m=-2
Vậy: (d): y=-3x+n
Thay x=1 và y=-1 vào (d), ta được:
n-3=-1
hay n=2
Đáp án A
Vectơ pháp tuyến của đường thẳng d là u → = m ; 2 m − 1 ; 2
Vectơ chỉ phương của mặt phẳng (P) là n → = 1 ; 3 ; − 2
Vì d // P ⇔ u → . n → = 0 ⇔ m = 1
a: (d)'//(d) nên (d'): y=-3x+b
Thay x=1 và y=2 vào (d'), ta được:
b-3=2
=>b=5
=>y=-3x+5
b: PTHĐGĐ là;
mx^2+3x-1=0
Để (d) cắt (P) tại hai điểm phân biệt nằm về cùng một phía so với trục tung thì
(-3)^2-4*m*(-1)>0 và -1/m>0
=>m<0 và 9+4m>0
=>m<0 và m>-9/4
=>-9/4<m<0
Theo đề, ta có
m-1=-3 và (m-1)+n=-1
=>m=-2 và m+n=0
=>m=-2 và n=2
\(a,\Leftrightarrow\left\{{}\begin{matrix}m-1=0\\y=n\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=1\\y=n\end{matrix}\right.\\ b,\Leftrightarrow\left\{{}\begin{matrix}m-1=-3\\m-1+n=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-2\\n=2\end{matrix}\right.\\ \Leftrightarrow\left(d\right):y=-3x+2\)