Cho hàm số f(x) có đạo hàm f ' x = x + 1 2 x − 1 3 2 − x . Hàm số f(x) đồng biến trên khoảng nào dưới đây?
A. 2 ; + ∞
B. (-1;1)
C. (1;2)
D. − ∞ ; − 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f'\left(x\right)=0\) có đúng 1 nghiệm bội lẻ \(x=0\) nên hàm có 1 cực trị
Lời giải:
$f'(x)=0\Leftrightarrow x=0; x=1; x=3; x=2$.
BBT:
Từ BBT suy ra điểm cực tiêu là $x=0$
Đáp án A
Ta có
.
Bảng xét dấu:
Suy ra hàm số có một điểm cực trị.
Đáp án B
Từ bảng xét dấu f'(x) ta thấy trên khoảng ( - ∞ ; - 1 ) thì f'(x)<0 nên hàm số y=f(x) nghịch biến trên khoảng ( - ∞ ; - 1 )
Đáp án C
f ' x > 0 ⇔ 1 < x < 2 ⇒ hàm số đồng biến trên khoảng (1;2)