K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2015

Ta có: 9A=1+1/32+...+1/398

Vậy 10A=(1+1/32+...+1/398) + (1/32+1/34+...+1/3100)

10A=1+2(1/32+1/34+...+1/398)+1/3100

Vậy 10A>1 suy ra A > 0,1 suy ra người ra đề đã đặt sai đề!

2 tháng 3 2020

sai nha

25 tháng 7 2015

\(A

10 tháng 3 2020

CMR: A<0,1

10 tháng 3 2020

Ta có : \(A=\frac{1}{3^2}-\frac{1}{3^4}+\frac{1}{3^6}-\frac{1}{3^8}+....+\frac{1}{3^{98}}-\frac{1}{3^{100}}\)(1)

=> 32.A = \(1-\frac{1}{3^2}+\frac{1}{3^4}-\frac{1}{3^8}+...+\frac{1}{3^{96}}-\frac{1}{3^{98}}\)(2)

Lấy (2) cộng (1) theo vế ta có : 

32.A + A = \(\left(\frac{1}{3^2}-\frac{1}{3^4}+\frac{1}{3^6}-\frac{1}{3^8}+...+\frac{1}{3^{98}}-\frac{1}{3^{100}}\right)+\left(1-\frac{1}{3^2}+\frac{1}{3^4}-\frac{1}{3^6}+...+\frac{1}{3^{96}}-\frac{1}{3^{98}}\right)\)

10A = \(1-\frac{1}{3^{100}}\)

=> A = \(\left(1-\frac{1}{3^{100}}\right):10=\frac{1}{10}-\frac{1}{3^{100}.10}=0,1-\frac{1}{3^{100}.10}< 0,1\)

=> A < 0,1 (ĐPCM)

17 tháng 6 2019

#)Giải :

\(A=\frac{1}{3^1}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}\)

\(A=\frac{2}{9^1}+\frac{2}{9^2}+\frac{2}{9^3}+...+\frac{2}{9^{50}}\)

\(\Rightarrow2A=1+\frac{2}{9}+\frac{2}{9^1}+\frac{2}{9^2}+\frac{2}{9^3}+...+\frac{2}{9^{49}}\)

\(\Rightarrow2A-A=A=\left(1+\frac{2}{9}+\frac{2}{9^1}+\frac{2}{9^2}+\frac{2}{9^3}+...+\frac{2}{9^{49}}\right)-\left(\frac{2}{9^1}+\frac{2}{9^2}+\frac{2}{9^3}+...+\frac{2}{9^{50}}\right)\)

\(\Rightarrow A=1+\frac{2}{9}-\frac{2}{9^{50}}=\frac{11}{9}-\frac{2}{9^{50}}\)

Có lẽ đúng .........................

17 tháng 6 2019

#)So sánh thì tự làm nhé !

\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.....\frac{899}{30^2}\)

\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{29.31}{30.30}=\frac{1.2.3.....29}{2.3.4.....30}.\frac{3.4.5.....31}{2.3.4.....30}\)

\(=\frac{1}{2}.\frac{31}{30}=\frac{31}{60}\)

PhanTranNgocThao kết bạn với minh nhe 

16 tháng 2 2020

K = (\(\frac{3^5}{3}+\frac{3^5}{3^2}+\frac{3^5}{3^3}+\frac{3^5}{3^4}\))+...+\(\left(\frac{3^{101}}{3^{97}}+\frac{3^{101}}{3^{98}}+\frac{3^{101}}{3^{99}}+\frac{3^{101}}{3^{100}}\right)\)

\(=\left(3^1+3^2+3^3+3^4\right)+...+\left(3^1+3^2+3^3+3^4\right)\)

\(=120+...+120\)(Có 25 số 120)

\(=25.120\)

\(=300\)

vậy ...