Bài 3:
So sánh A=\(\frac{1}{3^2}+\frac{1}{3^4}+\frac{1}{3^6}+\frac{1}{3^8}+...+\frac{1}{3^{2n+3}}+\frac{1}{3^{4n}}+...+\frac{1}{3^{98}}-\frac{1}{3^{100}}\)với \(\frac{1}{10}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 9A=1+1/32+...+1/398
Vậy 10A=(1+1/32+...+1/398) + (1/32+1/34+...+1/3100)
10A=1+2(1/32+1/34+...+1/398)+1/3100
Vậy 10A>1 suy ra A > 0,1 suy ra người ra đề đã đặt sai đề!
Ta có : \(A=\frac{1}{3^2}-\frac{1}{3^4}+\frac{1}{3^6}-\frac{1}{3^8}+....+\frac{1}{3^{98}}-\frac{1}{3^{100}}\)(1)
=> 32.A = \(1-\frac{1}{3^2}+\frac{1}{3^4}-\frac{1}{3^8}+...+\frac{1}{3^{96}}-\frac{1}{3^{98}}\)(2)
Lấy (2) cộng (1) theo vế ta có :
32.A + A = \(\left(\frac{1}{3^2}-\frac{1}{3^4}+\frac{1}{3^6}-\frac{1}{3^8}+...+\frac{1}{3^{98}}-\frac{1}{3^{100}}\right)+\left(1-\frac{1}{3^2}+\frac{1}{3^4}-\frac{1}{3^6}+...+\frac{1}{3^{96}}-\frac{1}{3^{98}}\right)\)
10A = \(1-\frac{1}{3^{100}}\)
=> A = \(\left(1-\frac{1}{3^{100}}\right):10=\frac{1}{10}-\frac{1}{3^{100}.10}=0,1-\frac{1}{3^{100}.10}< 0,1\)
=> A < 0,1 (ĐPCM)
#)Giải :
\(A=\frac{1}{3^1}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}\)
\(A=\frac{2}{9^1}+\frac{2}{9^2}+\frac{2}{9^3}+...+\frac{2}{9^{50}}\)
\(\Rightarrow2A=1+\frac{2}{9}+\frac{2}{9^1}+\frac{2}{9^2}+\frac{2}{9^3}+...+\frac{2}{9^{49}}\)
\(\Rightarrow2A-A=A=\left(1+\frac{2}{9}+\frac{2}{9^1}+\frac{2}{9^2}+\frac{2}{9^3}+...+\frac{2}{9^{49}}\right)-\left(\frac{2}{9^1}+\frac{2}{9^2}+\frac{2}{9^3}+...+\frac{2}{9^{50}}\right)\)
\(\Rightarrow A=1+\frac{2}{9}-\frac{2}{9^{50}}=\frac{11}{9}-\frac{2}{9^{50}}\)
Có lẽ đúng .........................
\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.....\frac{899}{30^2}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{29.31}{30.30}=\frac{1.2.3.....29}{2.3.4.....30}.\frac{3.4.5.....31}{2.3.4.....30}\)
\(=\frac{1}{2}.\frac{31}{30}=\frac{31}{60}\)
K = (\(\frac{3^5}{3}+\frac{3^5}{3^2}+\frac{3^5}{3^3}+\frac{3^5}{3^4}\))+...+\(\left(\frac{3^{101}}{3^{97}}+\frac{3^{101}}{3^{98}}+\frac{3^{101}}{3^{99}}+\frac{3^{101}}{3^{100}}\right)\)
\(=\left(3^1+3^2+3^3+3^4\right)+...+\left(3^1+3^2+3^3+3^4\right)\)
\(=120+...+120\)(Có 25 số 120)
\(=25.120\)
\(=300\)
vậy ...