K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2016

1,Gọi UCLN(n+1,n+2)=d

Ta có:n+1 chia hết cho d

         n+2 chia hết cho d

=>(n+2)-(n+1) chia hết cho d

=>1 chia hết cho d

=>d=1

Vậy \(\frac{n+1}{n+2}\)tối giản

23 tháng 2 2016

1. Để A tối giản thì:

(n + 1, n + 3) = 1

Gọi d là ƯC nguyên tố của n + 1 và n + 3

=> n + 3 - n - 1 chia hết cho d

=> 2 chia hết cho d

Mà d nguyên tố

=> d = 2

Tìm n để n + 1 chia hết cho d; n + 3 chia hết cho 2

Vì n + 3 = n + 1 + 2 nên n + 3 chia hết cho 2 thì n + 1 chia hết cho 2

=> n + 3 = 2k (k thuộc Z)

=> n = 2k - 3

Vậy n khác 2k - 3 thì A tối giản.

2. 12n + 1 / 30n + 2 tối giản

=> (12n + 1, 30n + 2) = 1

Gọi ƯCLN (12n + 1, 30n + 2) = d

=> 12n + 1 chia hết cho d => 5.(12n + 1) = 60n + 5 chia hết cho d

=> 30n + 2 chia hết cho d => 2.(30n + 2) = 60n + 4 chia hết cho d

=> 60n + 5 - 60n - 4 chia hết cho d

=> 1 chia hết cho d

=> d = 1

Vậy p/số trên tối giản.

12 tháng 5 2021

Câu 1:

gọi n-1/n-2 là M.

Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1

Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)

Gọi d = ƯCLN (n - 1; n - 2) 

=> n - 1 - (n - 2) ⋮⋮d       *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1

=> 1 ⋮⋮d

=> d ∈∈Ư (1)

Ư (1) = {1}

=> d = 1

Mà ngay từ lúc đầu d phải bằng 1 rồi.

Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.

6 tháng 2 2018

Bài 1:

Do \(\frac{a}{b}\) là một phân số chưa tối giản nên ta có thể đặt \(\hept{\begin{cases}a=md\\b=nd\end{cases}}\left[d=\left(a;b\right);\left(m;n\right)=1\right]\)

Khi đó ta có:

a) \(\frac{a}{a-b}=\frac{md}{md-nd}=\frac{md}{\left(m-n\right)d}\) chưa là phân số tối giản  (Cả tử vào mẫu vẫn có thể chia cho d để rút gọn)

b) \(\frac{2a}{a-2b}=\frac{2md}{md-2nd}=\frac{2md}{\left(m-2n\right)d}\) chưa là phân số tối giản   (Cả tử vào mẫu vẫn có thể chia cho d để rút gọn)

25 tháng 1 2015

 ta có: muốn n/2n+3 là phân số tối giản thì (n,2n+3)=1

Gọi ƯCLN(n,2n+3) là :d

suy ra:  n chia hết cho d và 2n+3 chia hết cho d

suy ra :    (2n+3) - 2n chia hết cho d

                 3 chia hết cho d 

  suy ra:  d thuộc Ư(3) =( 3,1)

 ta có: 2n +3 chia hết cho 3

            2n chia hết cho 3

           mà (n,3)=1 nên  n chia hết cho 3

vậy khi n=3k thì (n,2n+3) = 3    (k thuộc N) 

   suy ra : n ko bằng 3k thì (n,2n+3)=1

vậy khi n ko có dạng 3k thì n/2n+3 là phân số tối giản 

   

8 tháng 2 2015

a/ n rút gọn đi còn 1/2+3 bằng 1/5

b/rút gọn 3a hết còn 1/1 vậy bằng 1

4 tháng 5 2015

1) Gọi d= ƯCLN(2n +1; 3n+2)

=> 2n + 1 chia hết cho d => 3.(2n+1) chia hết cho d

3n+2 chia hết cho d => 2.(3n+2) chia hết cho d

=> 2.(3n+2) - 3.(2n+1) chia hết cho d

=> 1 chia hết cho d => d = 1 => 2n + 1 và 3n + 2 là nguyên tố cùng nhau => ps đã cho tối giản

2) Để A thuộc Z thì n+ 2 phải chia hết cho n - 5

=> (n+ 2) - (n-5) chia hết cho n - 5

=> 7 chia hết cho n - 5 hay n - 5 thuộc Ư(7) = {-1;1; 7;-7}

n-5-11-77
n46-212

Vậy n \(\in\) {-2;4;6;12}

4 tháng 5 2015

1) Gọi d= ƯCLN(2n +1; 3n+2)

=> 2n + 1 chia hết cho d => 3.(2n+1) chia hết cho d

3n+2 chia hết cho d => 2.(3n+2) chia hết cho d

=> 2.(3n+2) - 3.(2n+1) chia hết cho d

=> 1 chia hết cho d => d = 1 => 2n + 1 và 3n + 2 là nguyên tố cùng nhau => ps đã cho tối giản

2) Để A thuộc Z thì n+ 2 phải chia hết cho n - 5

=> (n+ 2) - (n-5) chia hết cho n - 5

=> 7 chia hết cho n - 5 hay n - 5 thuộc Ư(7) = {-1;1; 7;-7}

n-5-11-77
n46-212

Vậy n $\in$∈ {-2;4;6;12}

10 tháng 8 2016

a) gọi D là UCLN(3n-2;4n-3)

\(\Rightarrow\)\(\hept{\begin{cases}3n-2\\4n-3\end{cases}}\)chia hết cho  D \(\Rightarrow\)\(\hept{\begin{cases}4\left(3n-2\right)\\3\left(4n-3\right)\end{cases}}\)chia hết cho D \(\Rightarrow\)\(\hept{\begin{cases}12n-8\\12n-9\end{cases}}\)chia hết cho D

\(\Rightarrow\)[(12n-9)-(12n-8)] chia hết cho D

\(\Rightarrow\)(12n-9-12n+8) chia hết cho D

\(\Rightarrow\)-1 chia hết cho D => D \(\in\) U(1) =>D \(\in\){1;-1}

hay UCLN(3n-2;4n-3) \(\in\){1;-1}

chứng minh \(\frac{3n-2}{4n-3}\)là phân số tối giản

b) +) để A là phân số thì n-3\(\ne\)0

                             =>n\(\ne\)3

+) ta có  \(\frac{n+1}{n-3}\)\(\frac{n-3+4}{n-3}\)= 1 + \(\frac{4}{n-3}\)

để A là số nguyên thì \(\frac{4}{n-3}\) cũng phải là số nguyên 

=> 4 chia hết n-3

=> n-3 \(\in\)U(4)

mà U(4) = {-1;-2;-4;1;2;4}                             

ta có bảng

n-3-1-2-4124
n21-1457

vậy n \(\in\){2;1;-1;4;5;7} thì A là số nguyên
 

1 tháng 5 2019

1) Gọi \(d=ƯCLN\left(2n+1;3n+2\right)\)

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}\)

\(\Rightarrow2\left(3n+2\right)-3\left(2n+1\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow2n+1\)\(3n+2\)là nguyên tố cùng nhau

\(\Rightarrow\frac{2n+1}{3n+2}\)là phân số tối giản\(\left(đpcm\right)\)

1 tháng 5 2019

câu 1 : 

gọi d = ƯCLN ( 2n + 1; 3n +2 )

=> 2n + 1 chia hết cho d  => 3 ( 2n +1 ) chia hết cho d

    3n + 2 chia hết cho d => 2 ( 3n + 2 ) chia hết cho d

ta có : 3 ( 3n + 2 ) - [ 2 ( 2n + 21) ] hay 6n + 4  - [ 6n + 3 ] chia hết cho d

=> 1 chia hết cho d -> 2n +1 và 3n + 2 là hai số nguyên tố cùng nhau 

=> \(\frac{2n+1}{3n+2}\)  là phân số tối giản

3 tháng 2 2016

mik nghĩ n=0