K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2019

Đáp án C

Ta có y ' = 4 x 3 + 4 x = 4 x x 2 + 1 .  y’ đổi dấu tại 1 điểm, suy ra hàm số có 1 điểm cực trị.

6 tháng 3 2018

Chọn D

Ta có:  y ' = 3 x 2 - 4 x , y ' ' = 6 x - 4 ;

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

y''(0) = -4 < 0; y''(4/3) = 4 > 0. Do đó hàm số có hai cực trị là x = 0 và x = 4/3

Các mệnh đề (1); (2) và (3) sai;mệnh đề (4) đúng.

9 tháng 9 2019

Đáp án: B.

Hàm số y =  ( x + 1 ) 3 (5 - x) xác định trên R.

y' = - ( x + 1 ) 3  + 3 ( x + 1 ) 2 (5 - x) = 2 ( x + 1 ) 2 (7 - 2x)

y' = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Suy ra hàm số chỉ có một cực trị (là cực đại)

 

Cách khác: Nhận xét rằng y' chỉ đổi dấu khi x đi qua 7/2 nên hàm số chỉ có một cực trị

6 tháng 10 2019

Đáp án B

Hàm số y =  x + 1 3 (5 - x) xác định trên R.

y' = - x + 1 3  + 3 x + 1 2 (5 - x) = 2 x + 1 2 (7 - 2x)

y' = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Suy ra hàm số chỉ có một cực trị (là cực đại)

Cách khác: Nhận xét rằng y' chỉ đổi dấu khi x đi qua 7/2 nên hàm số chỉ có một cực trị

Chọn B

24 tháng 1 2022
23 tháng 4 2016

a) Xét hàm số \(y=ax^4+bx^2+c\)

Ta có \(y'=4ax^3+2bx=2x\left(2ax^2+b\right)\)

         \(y'=0\Leftrightarrow x=0\) hoặc \(2ax^2+b=0\left(1\right)\)

Đồ thị  hàm số có 3 cực trị phân biệt khi và chỉ khi \(y'=0\) có 3 nghiệm phân biệt hay phương trình (1) có 2 nghiệm phân biệt khác 0 \(\Leftrightarrow ab< 0\) (*)

Với điều kiện (*) thì đồ  thị có 3 điểm cực trị là :

\(A\left(0;c\right);B\left(-\sqrt{-\frac{b}{2a},}c-\frac{b^2}{4a}\right);C\left(\sqrt{-\frac{b}{2a},}c-\frac{b^2}{4a}\right)\)

Ta có \(AB=AC=\sqrt{\frac{b^2-8ab}{16a^2}};BC=\sqrt{-\frac{2b}{a}}\) nên tam giác ABC vuông khi và chỉ khi vuông tại A.

Khi đó \(BC^2=2AB^2\Leftrightarrow b^3+8a=0\)

Do đó yêu cầu bài toán\(\Leftrightarrow\begin{cases}ab< 0\\b^3+8a=0\end{cases}\)\(\Leftrightarrow\begin{cases}-2\left(m+1\right)< 0\\-8\left(m+1\right)^3+8=0\end{cases}\)\(\Leftrightarrow m=0\)

 

b) Ta có yêu cầu bài toán  \(\Leftrightarrow\begin{cases}ab< 0\\OA=BC\end{cases}\)\(\Leftrightarrow\begin{cases}-2\left(m+1\right)< 0\\m^2-4\left(m+1\right)=0\end{cases}\)

                                                           \(\Leftrightarrow m=2\pm2\sqrt{2}\)

27 tháng 2 2019

Đáp án: C

Ta có y(0) = 2, y(a) =  a 4  + 3a x 2  + 2 > 2 với mọi a ≠ 0.

Vậy hàm số có một điểm cực tiểu là x = 0.

6 tháng 9 2019

Đáp án: C

Ta có y(0) = 2, y(a) = a 4  + 3a x 2  + 2 > 2 với mọi a ≠ 0.

Vậy hàm số có một điểm cực tiểu là x = 0.

30 tháng 9 2017

Chọn B.