K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2018

Đáp án A

Để phương trình f(x)=m có 3 nghiệm phân biệt thì đường thẳng y=m cắt đồ thị hàm số tại 3 điểm phân biệt.

Dựa vào bảng biến thiên ta thấy -2<m<1

17 tháng 4 2018

Đáp án D

Phương pháp:

Đánh giá số nghiệm của phương trình f(x) = m + 1 bằng số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m + 1

Cách giải:

Số  nghiệm của phương trình f(x) = m + 1 bằng số giao điểm của đồ thị hàm số y = f(x)

và đường thẳng y = m + 1

Để f(x) = m + 1 có 3 nghiệm thực phân biệt thì 2 < m+1 < 4 ó3 < m < 3

19 tháng 8 2018

Đáp án là A

4 tháng 5 2019

Đáp án C

18 tháng 1 2018

Đáp án C

12 tháng 9 2018

Từ bảng biến thiên ta dễ có 1 <m <2 

Chọn đáp án C.

30 tháng 12 2018

Chọn B.

Đặt 

Khi đó, phương trình f( 4 x - x 2 ) =  log 2   m trở thành 

Để phương trình f( 4 x - x 2 ) =  log 2   m  có 4 nghiệm thực phân biệt thì đường thẳng y =  log 2   m  cắt đồ thị hàm số y = f(t) tại hai điểm phân biệt thỏa mãn t < 4.

Suy ra 

Vậy  ( 1 2 ;8).

4 tháng 4 2017

Đáp án C

Phương pháp:

Số nghiệm của phương trình f(x) = m bằng số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m

Cách giải:

Số nghiệm của phương trình f(x) = m(*) bằng số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m

⇒ Để (*) có 3 nghiệm thực phân biệt thì m ∈ (-1;3)

14 tháng 1 2017

Đáp án C

25 tháng 9 2019

Đáp án A