K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2019

Đáp án B

NV
7 tháng 4 2022

Chắc đề đúng là tính \(d\left(A;\left(BCC'B'\right)\right)\)

Gọi E là trung điểm BC \(\Rightarrow AE\perp BC\) (trong tam giác đều trung tuyến đồng thời là đường cao)

\(\Rightarrow AE\perp\left(BCC'B'\right)\)

\(\Rightarrow AE=d\left(A;\left(BCC'B'\right)\right)\)

Ta có: \(AE=\dfrac{AB\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều cạnh a)

\(\Rightarrow d\left(A;\left(BCC'B'\right)\right)=\dfrac{a\sqrt{3}}{2}\)

Chọn C

24 tháng 1 2022

\(S_{ABC}=\dfrac{1}{2}AB.AC=\dfrac{1}{2}.a.a\sqrt{3}=\dfrac{a^2\sqrt{3}}{2}\)

\(\Rightarrow V_{ABC}.A'B'C'=AA'.S_{ABC}=2a.\dfrac{a^2\sqrt{3}}{2}=a^3\sqrt{3}\)

Chọn A

25 tháng 3 2019

1 tháng 4 2021

tại sao Sđáy lại băng 4caưn 2 vậy mn

 

26 tháng 9 2019

1 tháng 2 2019

NV
7 tháng 7 2021

Đề bài thiếu dữ liệu cạnh của 2 tam giác đáy

 

NV
7 tháng 7 2021

\(B'N=2BN\Rightarrow BN=\dfrac{1}{3}BB'=2a\)

Qua N lần lượt kẻ các đường thẳng song song AB và BC, chúng cắt AA' tại E và CC' tại F

\(\Rightarrow AE=BN=CF=2a\Rightarrow PF=ME=\dfrac{6a}{2}-2a=a\)

\(NF=NE=AB=BC=a\)

\(\Rightarrow MN=NP=\sqrt{a^2+a^2}=a\sqrt{2}\)

\(\Rightarrow S_{MNP}=\dfrac{a^2\sqrt{7}}{4}\) (công thức Herong, hoặc kẻ NH vuông góc MP và tính NH theo Pitago với tam giác MNP cân tại N)

\(S_{ABC}=\dfrac{a^2\sqrt{3}}{4}\)

Do MA, NB, PC vuông góc (ABC) \(\Rightarrow\) ABC là hình chiếu vuông góc của MNP lên (ABC)

\(\Rightarrow cos\alpha=\dfrac{S_{ABC}}{S_{MNP}}=\sqrt{\dfrac{3}{7}}\Rightarrow\alpha\)

21 tháng 8 2019

19 tháng 10 2017

Đáp án là C

Gọi G là trọng tâm của tam giác ABC. 

Do tam giác ABC đều cạnh a nên 

Diện tích tam giác ABC bằng  a 3 3 4

Do đỉnh A’ cách đều ba đỉnh A, B, C nên A'G ⊥ (ABC) => A'G là đường cao của khối lăng trụ. 

Theo giả thiết, ta có  A ' A G ^   =   45 0 => ∆ A'GA vuông cân. Tù đó suy ra 

Vậy thể tích của khối lăng trụ bằng