Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình sau có bốn nghiệm phân biệt: x 4 - 16 x 2 + 8 1 - m x - m 2 + 2 m - 1 = 0
A. 4
B. 7
C. 6
D. 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khi đó phương trình đã cho trở thành
Để phương trình đã cho có bốn nghiệm thực phân biệt ⇔ phương trình (2) có hai nghiệm phân biệt thuộc (1;3)
có 4 giá trị nguyên m thỏa. Chọn A.
ta có phương trình như sau :
\(x^2+4x+m+3=0\text{ có hai nghiệm âm phân biệt}\Leftrightarrow\)\(\hept{\begin{cases}\Delta'>0\\S< 0\\P>0\end{cases}}\Leftrightarrow\hept{\begin{cases}4-m-3>0\\-4< 0\\m+3>0\end{cases}}\Leftrightarrow1>m>-3\)
vậy có 3 giá trị nguyên của m là 0,-1, -2
\(\Leftrightarrow\left\{{}\begin{matrix}3.2^xlogx-12logx-2^x+4=0\left(1\right)\\5^x=m\left(2\right)\end{matrix}\right.\) và \(5^x\ge m\) (\(x>0\))
Xét (1):
\(\Leftrightarrow3logx\left(2^x-4\right)-\left(2^x-4\right)=0\)
\(\Leftrightarrow\left(3logx-1\right)\left(2^x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x_1=2\\x_2=\sqrt[3]{10}\end{matrix}\right.\)
\(y=5^x\) đồng biến trên R nên (2) có tối đa 1 nghiệm
Để pt đã cho có đúng 2 nghiệm phân biệt ta có các TH sau:
TH1: (2) vô nghiệm \(\Rightarrow m\le0\) (ko có số nguyên dương nào)
TH2: (2) có nghiệm (khác với 2 nghiệm của (1)), đồng thời giá trị của m khiến cho đúng 1 nghiệm của (1) nằm ngoài miền xác định
(2) có nghiệm \(\Rightarrow m>0\Rightarrow x_3=log_5m\)
Do \(\sqrt[3]{10}>2\) nên bài toán thỏa mãn khi: \(x_1< x_3< x_2\)
\(\Rightarrow2< log_5m< \sqrt[3]{10}\)
\(\Rightarrow25< m< 5^{\sqrt[3]{10}}\) (hơn 32 chút xíu)
\(\Rightarrow\) \(32-26+1\) giá trị nguyên
Có bao nhiêu giá trị nguyên của tham số m để phương trình x^2 -2|x| +1-m = 0 có 4 nghiệm phân biệt ?
Đặt \(\left|x\right|=t\ge0\)
\(\Rightarrow t^2-2t+1-m=0\) (1)
Phương trình (1) là bậc 2 nên có đối đa 2 nghiệm t
Với mỗi giá trị \(t>0\) cho 2 nghiệm x tương ứng nên pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương phân biệt
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=1-\left(1-m\right)>0\\t_1+t_2=2>0\\t_1t_2=1-m>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m< 1\end{matrix}\right.\) \(\Leftrightarrow0< m< 1\)
Có bao nhiêu giá trị nguyên của tham số m để phương trình x^2 -2|x| +1-m = 0 có 4 nghiệm phân biệt ?
Đặt \(\left|x\right|=t\ge0\Rightarrow t^2-4t-m=0\) (1)
Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương pb
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=4+m>0\\t_1+t_2=4>0\\t_1t_2=-m>0\end{matrix}\right.\) \(\Leftrightarrow-4< m< 0\Rightarrow m=\left\{-3;-2;-1\right\}\)
Chọn A.
Phương pháp:
Giải phương trình bằng phương pháp xét hàm số.
Cách giải:
Phương trình (1) có 2 nghiệm thực phân biệt Û Phương trình (2) có 2 nghiệm thực phân biệt lớn hơn 1 (*)
Xét hàm số