Cho \(\Delta ABC\) nhọn, trực tâm H. Chứng minh
a) Shbc/tan A = Shca/tan B = Shab/tan C
b) (tan A)vector HA + (tan B)vector HB + (tan C)vector HC = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(HC=\dfrac{AH^2}{HB}=\dfrac{16}{3}\left(cm\right)\)
BC=BH+CH=16/3+3=25/3(cm)
\(AB=\sqrt{3\cdot\dfrac{25}{3}}=5\left(cm\right)\)
\(AC=\sqrt{\dfrac{16}{3}\cdot\dfrac{25}{3}}=\dfrac{20}{3}\left(cm\right)\)
b: Xét ΔADI có HB//ID
nên AH/HI=AB/BD
=>AH=HI
mà AH=1/2HE
nên HE=2HI
=>HI=IE
\(\tan IED=\dfrac{ID}{IE}=\dfrac{2\cdot HB}{AH}=\dfrac{2\cdot3}{4}=\dfrac{3}{2}\)
\(A+B+C=180^0\Rightarrow tan\left(A+B\right)=-tanC\)
\(\Rightarrow\frac{tanA+tanB}{1-tanA.tanB}=-tanC\Leftrightarrow tanA+tanB=-tanC+tanA.tanB.tanC\)
\(\Leftrightarrow tanA+tanB+tanC=tanA.tanB.tanC\)
\(2A+2B+2C=360^0\Rightarrow tan\left(2A+2B\right)=-tan2C\)
\(\Leftrightarrow\frac{tan2A+tan2B}{1-tan2A.tan2B}=-tan2C\)
\(\Leftrightarrow tan2A+tan2B+tan2C=tan2A.tan2B.tan2C\)