K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2016

khó thật vì mik chưa học đến lớp 8

30 tháng 1 2016

Gợi ý : Vẽ hình là giải đc

Câu 2: 

a: Xét ΔABC có AM/AB=AN/AC

nên MN//BC

b: Xét ΔMBC và ΔNCB có

MB=NC

\(\widehat{MBC}=\widehat{NCB}\)

BC chung

Do đó: ΔMBC=ΔNCB

Suy ra: \(\widehat{ICB}=\widehat{IBC}\)

hay ΔIBC cân tại I

28 tháng 5 2017

c). MP=BI = 8 

Mà MP//BI => PBI là hình bình hành

=> MPI = MBI  Mà MBI = AMN

=>NPI = AMN;=>TG AMN đ d QNP

Mà QNP đ d QCI

=>AMN đ d QIC

a: Xét ΔBKA vuông tại K và ΔBKM vuông tại K có

BK chung

KA=KM

=>ΔBKA=ΔBKM

=>góc ABK=góc MBK

Xét ΔBAC và ΔBMC có

BA=BM

góc ABC=góc MBC

BC chung

=>ΔBAC=ΔBMC

=>góc BMC=90 độ

b: Xét tứ giác ACMD có

K là trung điểm chung của AM và CD

=>ACMD là hình bình hành

=>MD//AC

=>MD vuông góc AB

26 tháng 2 2020

Tức ghê á, gửi cái ảnh cũng không được, tôi làm vậy !!

A B C M N I O K

Tóm tắt :

Ta có :

\(\frac{MI}{BK}=\frac{MN}{BC}=\frac{AM}{AB}\) ( Talet ) . Rồi chứng minh hai tam giác đồng dạng AMI và ABK

\(\Rightarrow A,I,K\) thẳng hàng (1)

Lại có :

\(\frac{MI}{KC}=\frac{MN}{BC}=\frac{OM}{OC}\) ( Talet ). Rồi chứng minh hai tam giác đồng dạng MIO và CKO

\(\Rightarrow I,O,K\) thẳng hàng (2)

Từ (1) và (2) suy ra A,I,K,O thẳng hàng.

26 tháng 2 2020

Đây nè, vừa hôm qua tôi có làm bài này rồi nè, nhưng không biết OLM có duyệt ảnh của tôi không nữa :((

Bạn tham khảo, thay các điểm khác thôi còn bài toán vẫn giống nhé !