Hình chóp S.ABCD có đáy là hình vuông, hai mặt bên (SAB) và (SAD) vuông góc với mặt đáy. AH, AK lần lượt là đường cao của tam giác SAB, tam giác SAD. Mệnh đề nào sau đây là sai?
A. H K ⊥ S C .
B. S A ⊥ A C .
C. B C ⊥ A H .
D. A K ⊥ B D .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương án A sai vì AB và CB không vuông góc với giao tuyến SB của (SAB) và (SBC), nên góc ABC không phải là góc của hai mặt phẳng này; phương án B sai vì góc BAD không phải là góc của hai mặt phẳng (SAB) với mặt phẳng (SBC); phương án C sai vì AB ⊥ BC thì chưa đủ để kết luận AB vuông góc với mặt phẳng (SBC); phương án D đúng vì : BC ⊥ (SAB) do BC ⊥ AB và BC ⊥ SA ⇒ (SBC) ⊥ (SAB)
Đáp án D
Phương án A sai vì hai điều kiện AH ⊥ (SBC) (do AH ⊥ SB và AH ⊥ BC) và AK ⊥ (SCD) (do AK vuông góc với SD và AK ⊥ CD) chưa liên quan đến (SAC); phương án B đúng vì AH ⊥(SBC) và AK ⊥ (SCD) nên SC ⊥ (AHK), từ đó suy ra hai mặt phẳng (AHK) và (SAC) vuông góc; phương án C và D đều sai vì chưa đủ điều kiện kết luận SC ⊥ (AHK)
Đáp án B
Đáp án A
Gọi N là trung điểm AD suy ra HN // BD.
Góc giữa BD và (SAD) bằng góc giữa HN và (SAD).
Ta có AD⊥SH, AD⊥AB suy ra AD⊥ (SAB) . Trong mặt phẳng (SAB) kẻ HK⊥SA nên ta suy ra AD⊥HK và HK⊥ (SAD) . vậy góc giữa HN và (SAD) là góc HNK.
Gọi cạnh của hình vuông là a
Ta tính được HN = a 2 2 . Xét tam giác vuông SHA vuông tại H ta có
Xét tam giác vuông HNK vuông tại K ta có
Đáp án D
Sử dụng mối quan hệ vuông góc giữa đường thẳng với đường thẳng, đường thẳng với mặt phẳng.
- Hai mặt phẳng cùng vuông góc với đường thẳng thứ ba thì giao tuyến của chúng vuông góc với mặt phẳng đó.
- Một đường thẳng vuông góc với hai đường thẳng cắt nhau thì nó vuông góc với mặt phẳng chứa hai đường thẳng đó.
- Một đường thẳng vuông góc với một mặt phẳng thì nó vuông góc với mọi đường thẳng nằm trong mặt phẳng đó.
Vì S A B ⊥ A B C D S A D ⊥ A B C D S A B ∩ S A D = S A ⇒ S A ⊥ A B C D ⇒ S A ⊥ B C
Mà A H ⊥ S B nên A H ⊥ S B C ⇒ A H ⊥ S C .
Tương tự ta có A K ⊥ S C D ⇒ A H ⊥ S C .
Do đó S C ⊥ A H K ⇒ S C ⊥ H K ⇒ A đúng.
S A ⊥ A B C D ⇒ S A ⊥ A C ⇒ B đúng.
B C ⊥ A H c m t ⇒ C đúng.