K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2019

Đáp án B

8 tháng 7 2018

Đáp án B

17 tháng 10 2018

18 tháng 3 2018

5 tháng 4 2017

Đáp án D

Phương pháp: Đưa khoảng cách từ M đến (SAC) về khoảng cách từ H đến (SAC).

Cách giải: Gọi H là trung điểm của AB ta có SH ⊥ (ABCD)

Ta có (SC;(ABCD)) = (SC;HC) = Góc SCH =  45 0

=>∆SHC vuông cân tại H => 

 

Trong (ABD) kẻ HIAC,trong (SHI) kẻ HKSI ta có:

Ta có ∆AHI: ∆A CB(g.g) => 

23 tháng 1 2018

 

15 tháng 6 2018

Đáp án B

Dễ thấy: S C H ^ = 45 ∘  Gọi H là trung điểm của AB ta có  S H ⊥ A B ⇒ S H ⊥ A B C D .

Ta có: S H = H C = a 17 2 .  

Ta có:  d = d M , S A C = 1 2 d D , S A C

Mà 1 2 d D , S A C = 1 2 d B , S A C  nên  d = d H , S A C

Kẻ H I ⊥ A C , H K ⊥ S I ⇒ d H , S A C = H K  

Ta có: H I = A B . A D 2 A C = a 5 5  

Từ đó suy ra: d = H K = S H . H I S I = a 1513 89 .  

10 tháng 9 2017

24 tháng 2 2017

31 tháng 3 2018

Chọn đáp án C

Gọi O là trung điểm AB.

Do tam giác SAB đều và nằm trong mặt phẳng vuông góc (ABCD) nên

Chọn hệ trục tọa độ Oxyz như hình vẽ. Chọn a = 2.

Khi đó: 

Ta có mặt phẳng (ABCD) có vecto pháp tuyến là 

Mặt phẳng (GMN) có vecto pháp tuyến là 

 

Gọi α là góc giữa hai mặt phẳng (GMN) và (ABCD)

Ta có: