K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2017

26 tháng 10 2017

Chọn: B

 

6 tháng 4 2019

Ta có:

f ( x ) = 31 x + 3 x + m x ⇒ f ' ( x ) = 31 x ln 31 + 3 x ln 3 + m

Xét 2 trường hợp sau:

TH1: m ≥ 0 , f ' ( x ) > 0 ⇒  hàm số y=f(x) luôn đồng biến ⇒ không tồn tại giá trị min.

TH2: m < 0 ⇒ f ' ' ( x ) = 31 x ln 2 31 + 3 x ln 2 3 > 0

⇒ f ' ( x ) có nhiều nhất 1 nghiệm x 0 . Chọn trường hợp f ' ( x ) = 0  có nghiệm, khi đó

Khi đó: f ( x 0 ) = 2 f ' ( x 0 ) = 0

⇒ 31 x 0 + 3 x 0 + m x 0 = 2 31 x 0 ln 31 + 3 x 0 ln 3 + m = 0 *  

Với x 0 = 0 ⇒ m = - ln 31 - ln 3 ∈ - 5 ; 0  

Với x 0 # 0 *

⇒ m = - 31 x 0 - 3 x 0 x 0 m = - 31 x 0 ln 31 - 3 x 0 ln 3 * *  

Từ (**) bấm máy tính ta thấy m ∈ - 5 ; 0  là thỏa mãn.

Chọn đáp án B.

21 tháng 11 2019

Đáp án đúng : A

15 tháng 9 2019

Đáp án B

Bảng biến thiên của hàm số trên  0 ; 9 2  có dạng như hình vẽ dưới đây.

Do đó GTLN của hàm số là f(0);f(2) hoặc f 9 2 ; GTNN của hàm số là f(1) hoặc f(4)

Mặt khác f 1 = f 2 - ∫ 1 2 f ' x d x ; f 4 = f 2 - ∫ 2 4 f ' x d x  

Dựa vào hình vẽ ta có: ∫ 2 4 f ' x d x > ∫ 1 2 f ' x d x ⇒ f 4 < f 1 (loại C và D)

Mặt khác f 9 2 = f 4 + ∫ 4 9 2 f ' x d x ; f 0 = f 1 + ∫ 0 1 f ' x d x  

Dựa vào hình vẽ ta có: ∫ 0 1 f ' x d x > ∫ 4 9 2 f ' x d x f 1 > f 4 ⇒ f 0 > f 9 2 .

18 tháng 1 2018

30 tháng 9 2018

Chọn D

22 tháng 4 2017

Chọn A.

7 tháng 12 2017

Đáp án C

10 tháng 11 2017