Giả sử m là số thực thỏa mãn giá trị nhỏ nhất của hàm số f x = 31 x + 3 x + m x trên R là 2. Mệnh đề nào sau đây đúng ?
A. m ∈ - 10 ; - 5
B. m ∈ - 5 ; 0
C. m ∈ 0 ; 5
D. m ∈ 5 ; 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
f ( x ) = 31 x + 3 x + m x ⇒ f ' ( x ) = 31 x ln 31 + 3 x ln 3 + m
Xét 2 trường hợp sau:
TH1: m ≥ 0 , f ' ( x ) > 0 ⇒ hàm số y=f(x) luôn đồng biến ⇒ không tồn tại giá trị min.
TH2: m < 0 ⇒ f ' ' ( x ) = 31 x ln 2 31 + 3 x ln 2 3 > 0
⇒ f ' ( x ) có nhiều nhất 1 nghiệm x 0 . Chọn trường hợp f ' ( x ) = 0 có nghiệm, khi đó
Khi đó: f ( x 0 ) = 2 f ' ( x 0 ) = 0
⇒ 31 x 0 + 3 x 0 + m x 0 = 2 31 x 0 ln 31 + 3 x 0 ln 3 + m = 0 *
Với x 0 = 0 ⇒ m = - ln 31 - ln 3 ∈ - 5 ; 0
Với x 0 # 0 *
⇒ m = - 31 x 0 - 3 x 0 x 0 m = - 31 x 0 ln 31 - 3 x 0 ln 3 * *
Từ (**) bấm máy tính ta thấy m ∈ - 5 ; 0 là thỏa mãn.
Chọn đáp án B.
Đáp án B
Bảng biến thiên của hàm số trên 0 ; 9 2 có dạng như hình vẽ dưới đây.
Do đó GTLN của hàm số là f(0);f(2) hoặc f 9 2 ; GTNN của hàm số là f(1) hoặc f(4)
Mặt khác f 1 = f 2 - ∫ 1 2 f ' x d x ; f 4 = f 2 - ∫ 2 4 f ' x d x
Dựa vào hình vẽ ta có: ∫ 2 4 f ' x d x > ∫ 1 2 f ' x d x ⇒ f 4 < f 1 (loại C và D)
Mặt khác f 9 2 = f 4 + ∫ 4 9 2 f ' x d x ; f 0 = f 1 + ∫ 0 1 f ' x d x
Dựa vào hình vẽ ta có: ∫ 0 1 f ' x d x > ∫ 4 9 2 f ' x d x f 1 > f 4 ⇒ f 0 > f 9 2 .