K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2019

Đáp án B

+ Công thức của định luật Culong là  F = k q 1 q 2 R 2

1. Tìm hàm f: \(R\rightarrow R\) thỏa mãn điều kiện a) \(f\left(x^2+f\left(y\right)\right)=y+x.f\left(x\right),\forall x,y\in R\) b) \(f\left(\left(x+1\right).f\left(y\right)\right)=f\left(y\right)+y.f\left(x\right),\forall x,y\in R\) c) \(f\left(x^3+f\left(y\right)\right)=x^2f\left(x\right)+y,\forall x,y\in R\) d) \(\left\{{}\begin{matrix}f\left(x+y\right)=f\left(x\right)+f\left(y\right)\\f\left(xy\right)=f\left(x\right).f\left(y\right)\end{matrix}\right.\) 2. Cho A có n phần...
Đọc tiếp

1. Tìm hàm f: \(R\rightarrow R\) thỏa mãn điều kiện

a) \(f\left(x^2+f\left(y\right)\right)=y+x.f\left(x\right),\forall x,y\in R\)

b) \(f\left(\left(x+1\right).f\left(y\right)\right)=f\left(y\right)+y.f\left(x\right),\forall x,y\in R\)

c) \(f\left(x^3+f\left(y\right)\right)=x^2f\left(x\right)+y,\forall x,y\in R\)

d) \(\left\{{}\begin{matrix}f\left(x+y\right)=f\left(x\right)+f\left(y\right)\\f\left(xy\right)=f\left(x\right).f\left(y\right)\end{matrix}\right.\)

2. Cho A có n phần tử. Với \(r\in Z^+\), gọi \(f\left(r;n\right)\) là số cách chọn ra k tập con của A sao cho các tập con này không có phần tử chung. Tính \(f\left(r;n\right)\) theo n biết

a) r = 1

b) r = 2

c) r = 3

d) r bất kì

3. Cho \(A=\left\{1;2;3;...;n\right\}\). Với mỗi tập X, kí hiệu m(X) là trung bình cộng các phần tử của X. Gọi S là tập các tập con khác tập rỗng của A. T = {m(X)/ \(X\in S\)}

Tính m(T)

m.n giúp với mk đang cần gấp

Hung nguyen Ace Legona Akai Haruma

0
4 tháng 5 2017

Ôn tập toán 7

AH
Akai Haruma
Giáo viên
21 tháng 7 2017

Lời giải:

Áp dụng định lý về dấu của tam thức bậc 2.

a)

Để hàm \(f(x)=4x^2-(m+2)x+2m-3>0\forall x\in\mathbb{R}\)

\(\Leftrightarrow \Delta=(m+2)^2-16(2m-3)<0\)

\(\Leftrightarrow m^2-28m+52=(m-2)(m-26)<0\)

\(\Leftrightarrow 2< m<26\)

b)

Nếu \(m=-1\rightarrow f(x)=-6x\) không thể âm với mọi $x$

Nếu \(m\neq -1\):

Để \(f(x)=(m+1)x^2+2(2m-1)x-m-1<0\forall x\in\mathbb{R}\) thì cần hai đk sau:

1. \(m+1<0\leftrightarrow m<-1\)

2. \(\Delta'=(2m-1)^2+(m+1)^2<0\) (hiển nhiên vô lý)

Vậy không tồn tại $m$ thỏa mãn.

29 tháng 7 2018

bằng ?

29 tháng 7 2018

và bằng 

A+S+D+F+G+H+J+K+L+M+NB++V+C+X+Z+Q+W+E+R+T+Y+U+I+O+P-A-S-D-F-G-H-J-K-L-MN-B-V-C-XZ-Q-W-E-R--T-Y-U-I-O-P/AS/D/F/G/H/J/K/L/M/N/B/V/C/X/Z/Q//W/E/R/T/Y/U/I/O/P/

26 tháng 9 2021

bạn ơi đề này bạn ghi linh tinh thì ai làm đc hả bạn, đừng đăng bài viết linh tinh nữa đi đc ko :|

22 tháng 12 2021

báo cáo thôi,lại có việc để làm rồi

15 tháng 8 2018

a, f(y)=4y6−6y2−3y4−3+4y4−4y6+5y

=\(^{y^4-6y^2+5y-3}\)

b, f(0)=\(^{0^4-6.0^2+5.0-3}\)

=-3

f(\(\dfrac{1}{2}\))=(\(\left(\dfrac{1}{2}\right)^4-6.\left(\dfrac{1}{2}\right)^2+5.\dfrac{1}{2}-3\)

=\(\dfrac{1}{16}-\dfrac{3}{2}+\dfrac{5}{2}-\dfrac{6}{2}\)

=\(\dfrac{1}{16}-\dfrac{24}{16}+\dfrac{40}{16}-\dfrac{48}{16}\)

=\(\dfrac{-31}{16}\)

c, A(y)=f(y)+k(y)

=(\(^{y^4-6y^2+5y-3}\))+(\(4y^2-y^4\)

=\(2y^2+5y-3\)

Xin lỗi ad nhìu nha :(( ý d tui hơm nhớ cách làm nên hông dám chỉ bậy:)

15 tháng 12 2022

a: f(x1)+f(x2)=a*x1+a*x2=a(x1+x2)

f(x1+x2)=a*(x1+x2)

=>f(x1)+f(x2)=f(x1+x2)

b: f(kx)=a*kx=ak*x

k*f(x)=k*ax=x*ka

=>f(kx)=k*f(x)

c: f(x1)*f(x2)=f(x1*x2)

=>ax1*ax2=a*(x1*x2)

=>a^2-a=0

=>a=1

Bài 1: Cho đa thức bậc 4 thỏa mãn: P(-1) = 0 và P(x) – P(x – 1) = x(x+1)(2x+1) a) Xác định P(x) b) Suy ra giá trị của tổng: S = 1.2.3 + 2.3.5 +…+ n(n+1)(2n+1) Bài 2: Xác định a và b sao cho đa thức \(P\left(x\right)=ax^4+bx^3+1\) chia hết cho đa thức Q(x) = (x -1)2 . Với a, b vừa tìm được, xác định các nghiệm của P(x). Bài 3: Xác định phần dư R(x) của phép chia: \(P\left(x\right)=1+x+x^9+x^{25}+x^{49}+x^{81}\) cho \(x^3-x\). Tính R(701,4) Bài...
Đọc tiếp

Bài 1: Cho đa thức bậc 4 thỏa mãn: P(-1) = 0 và P(x) – P(x – 1) = x(x+1)(2x+1)
a) Xác định P(x)
b) Suy ra giá trị của tổng: S = 1.2.3 + 2.3.5 +…+ n(n+1)(2n+1)

Bài 2: Xác định a và b sao cho đa thức \(P\left(x\right)=ax^4+bx^3+1\) chia hết cho đa thức Q(x) = (x -1)2 . Với a, b vừa tìm được, xác định các nghiệm của P(x).

Bài 3: Xác định phần dư R(x) của phép chia: \(P\left(x\right)=1+x+x^9+x^{25}+x^{49}+x^{81}\) cho \(x^3-x\). Tính R(701,4)

Bài 4: Cho f(1) =1; f (m+n) = f(m) +f(n) +mn ( với m,n nguyên dương)
a) CM: f(k) – f(k-1) =k
b) Tính f(10); f(2007); f(2008)

Bài 5: Cho a+b+c=0 và ab + bc + ac =0. Tính giá trị biểu thức: \(M=\left(a-2005\right)^{2006}-\left(b-2005\right)^{2006}-\left(c+2005\right)^{2006}\)

Bài 6: Cho \(a>b>0\) thỏa mãn \(3a^2+3b^2=10ab\). Tính giá trị biểu thức: \(P=\dfrac{a-b}{a+b}\)

Mình biết lần này thực sự mình hỏi nhiều nhưng vẫn mong các bạn giúp đỡ, mình sẽ tick cho bạn nào trả lời được trước 16/8/2017 nhé, 1 bài thôi cũng tick, cảm ơn các bạn nhiều, giúp mình nhé !!! vui

5
15 tháng 8 2017

\(P^2=\dfrac{\left(a-b\right)^2}{\left(a+b\right)^2}=\dfrac{a^2-2ab+b^2}{a^2+2ab+b^2}=\dfrac{3a^2+3b^2-6ab}{3a^2+3b^2+6ab}=\dfrac{4ab}{16ab}=\dfrac{1}{4}\Rightarrow P=\dfrac{1}{2}\)

15 tháng 8 2017

\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right)\)\(ab+bc+ac=0\Rightarrow a^2+b^2+c^2=0\Rightarrow a=b=c=0\)

Vậy \(M=-2005^{2006}\)