Cho hai điểm A, B thuộc đồ thị hàm số y = - x 3 + 3 x + 2 (C) đối xứng nhau qua điểm I(-1;3). Tọa độ điểm A là:
A. A(1;4)
B. A(-1;0)
C. Không tồn tại
D. A(0;2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn: D
Giả sử A x 1 ; - x 1 3 + 3 x 1 + 2 ; B x 2 ; - x 2 3 + 3 x 2 + 2
Do A, B đối xứng nhau qua điểm I - 1 ; 3 nên
hoặc A - 2 ; 4
Vậy, tọa độ điểm A có thể là A 0 ; 2
Đáp án A
Gọi với
Do A, B đối xứng nhau qua điểm M(3;3) nên M là trung điểm của AB.
Tính được:
Đáp án C.
Gọi A a ; a + 1 a − 1 ∈ C vì I 1 ; 1 là trung điểm của A B ⇒ B 2 − a ; a − 3 a − 1
Khi đó:
A B → = 2 − 2 a ; − 4 a − 1 ⇒ A B = 4 a − 1 2 + 16 a − 1 2 = 2 a − 1 2 + 4 a − 1 2 .
Áp dụng bắt đẳng thức A M − G M , ta có a − 1 2 + 4 a − 1 2 ≥ 2 a − 1 2 . 4 a − 1 2 = 4.
Suy ra:
S A E B F = A E 2 = 1 2 A B 2 ≥ 1 2 .4 2 = 8.
Vậy S min = 8.
Đáp án D
S = 1 2 A B . D E = 1 2 A B 2 . Do đó hình vuông có diện tích nhỏ nhất khi AB là phân giác của góc giữa 2 đường tiệm cận. Phương trình A B : y = x . Hoành độ A, B là nghiệm của phương trình
x + 1 x − 1 = x ⇔ ⇔ x 2 − 2 x − 1 = 0 ⇒ A 1 − 2 ; 1 − 2 B 1 + 2 ; 1 + 2 ⇒ A B = 4
Vậy S min = 1 2 .4 2 = 8 .
Đáp án A
Phương pháp: Tham số hóa điểm thuộc đồ thị hàm số (C).
Lấy điểm đối xứng với điểm đó qua O (Điểm (a;) đối xứng với điểm (-a;-b)qua gốc tọa độ O).
Cho điểm đối xứng vừa xác định thuộc (C).
Cách giải:
Chú ý và sai lầm : Có thể thử trực tiếp từng đáp án và suy ra kết quả.
Giả sử A ( x 1 ; - x 1 3 + 3 x 1 + 2 ) ; B ( x 2 ; - x 2 3 + 3 x 2 + 2 )
Do A, B đối xứng nhau qua điểm I(-1;3) nên
x 1 + x 2 = - 2 - x 1 3 + 3 x 1 + 2 - x 2 3 + 3 x 2 + 2 = 6 ⇔ { x 1 + x 2 = - 2 - x 1 + x 2 3 + 3 x 1 x 2 ( x 1 + x 2 ) + 3 ( x 1 + x 2 ) + 4 = 6 ⇔ x 1 + x 2 = - 2 - ( - 2 ) 3 + 3 x 1 x 2 . ( - 2 ) + 3 . ( - 2 ) + 4 = 6 ⇔ x 1 + x 2 = - 2 x 1 x 2 = 0 ⇔ [ x 1 = 0 x 2 = - 2 x 1 = - 2 x 2 = 0 ⇒ A ( 0 ; 2 )
hoặc A(-2;4)
Vậy, tọa độ điểm A có thể là A(0;2)
Chọn đáp án D.