K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2017

Đáp án đúng : D

26 tháng 5 2017

Đáp án D

Ta có

Vậy M thuộc mặt trụ có trục AB và bán kính r = 8

12 tháng 5 2018

16 tháng 12 2019

⇔ M I 2 + 2 M I → . I A → + I A 2 − 9 M I 2 + 2 M I → . I B → + I B 2 = 0 ⇔ M I 2 + I A 2 − 9 M I 2 − 9 I B 2 + 2 M I → I A → − 9 I B → = 0 ⇔ − 8 M I 2 + I A 2 − 9 I B 2 = 0 ⇒ − 8 M I 2 + 9 2 2 − 9. 1 2 2 = 0 ⇔ − 8 M I 2 = − 18 ⇔ M I 2 = 9 4 ⇔ M I = 3 2

Vậy M nằm trên mặt cầu tâm I bán kính   M I = 3 2

Chọn: D

13 tháng 10 2019

Chọn D

Gọi E, F là các điểm chia trong và chia ngoài của đoạn thẳng AB theo tỉ số 3, nghĩa là

 

Khi đó, E , F là chân các đường phân giác trong và phân giác ngoài của góc M của tam giác MAB. Suy ra:

Vậy M thuộc mặt cầu đường kính EF. Tính được EF = 3, suy ra R=3/2

23 tháng 5 2018

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

a) Xét tứ giác BEDC có:

∠BEC = 90o (CE là đường cao)

∠BDC = 90o (BD là đường cao)

=> Hai đỉnh D và E cùng nhìn cạnh BC dưới 1 góc vuông

=> Tứ giác BEDC là tứ giác nội tiếp

b) Xét ΔAEC và ΔADB có:

∠BAC là góc chung

∠AEC = ∠BDA = 90o

=> ΔAEC ∼ ΔADB (g.g)

\(\Rightarrow\frac{AE}{AD}=\frac{AC}{AB}\Rightarrow\text{AE.AB = AC.AD}\)

c) Ta có:

∠FBA = 90o (góc nội tiếp chắn nửa đường tròn)

=>FB⊥AB

Lại có: CH⊥AB (CH là đường cao)

=> CH // FB

Tương tự,( FCA) = 90o (góc nội tiếp chắn nửa đường tròn)

=>FC⊥AC

BH là đường cao => BH ⊥AC

=> FC // BH

Xét tứ giác CFBH có:

CH // FB

FC // BH

=> Tứ giác CFBH là hình bình hành.

Mà I là trung điểm của BC

=> I cũng là trung điểm của FH

Hay F, I, H thẳng hàng.

2) Diện tích xung quanh của hình trụ:

S = 2πRh = 2πR2 = 128π (do chiều cao bằng bán kính đáy)

=> R = 8 cm ; h = 8cm

Thể tích của hình trụ là

V = πR2 h = π.82.8 = 512π (cm3)

HÌNH TRONG THỐNG KÊ HỎI ĐÁP NHA VỚI LẠI MIK TRẢ LỜI TOÀN CÂU KHÓ MÀ CHẲNG CÓ CÁI GP NÀO

VCM JACK  trả lok đ nè

22 tháng 2 2019

5 tháng 5 2019



24 tháng 6 2019

Xét mệnh đề (I):

Gọi I, J lần lượt là trung điểm AB, CD. Khi đó

M A → + M B → = M C → + M D → ⇔ 2 M I → = 2 M J → ⇔ M I = M J

Do đó tập hợp các điểm M là mặt phẳng trung trực của IJ

Vậy mệnh đề này đúng.

* Xét mệnh đề (II):

Gọi G là trọng tâm tứ diện ABCD

Khi đó  M A → + M B → + M C → + M D → = 4 ⇔ 4 M G → = 4 ⇔ M G = 1

Do đó tập hợp các điểm M là mặt cầu tâm G ( 1;2;3 ) và bán kính R = 1

Vậy mệnh đề này đúng

Đáp án D