Cho x,y là các số nguyên. Chứng tở rằng nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31. Điều ngược lại có đúng ko
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6x + 11y ⋮ 31
<=> 6x + 42y - 31y ⋮ 31
<=> 6(x + 7y) - 31y ⋮ 31
Vì 31y ⋮ 31 . Để 6(x + 7y) - 31y ⋮ 31 <=> 6(x + 7y) ⋮ 31
Mà ( 6;31 ) = 1 => x + 7y ⋮ 31 ( đpcm )
Đặt A = 6x + 3y ; B = x + 7y
Xét hiệu 6B - A = 6 . ( x + 7 y ) - ( 6x + 3y )
= 6x + 42y - 6x - 3y
= 39y
Chị thấy đến đây chị ko làm đc nữa. Em có chép nhầm đề bài ko vậy .
Đặt A=6(x+7y)-(6x+11y)
= 6x+42y-6x-11y
= 31y
Do 31y chia hết cho 31.
6x+11y chia hết cho 31 \(\Rightarrow\) 6(x+7y) chia hết cho 31.
Do (6, 31)=1 \(\Rightarrow\) x+7y chia hết cho 31.
Vậy nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31.
Đặt \(A=6\left(x+7y\right)-\left(6x+11y\right)\)
\(=6x+42y-6x-11y\)
\(=3y\)
Do \(31y⋮31\)
\(6x+11y⋮31\Rightarrow6\left(x+7y\right)⋮31\)
Vì \(6\left(x+7y\right)⋮31\Rightarrow x+7y⋮31\)
Vậy nếu \(6x+11y⋮31\Rightarrow x+7y⋮31\)(Đpcm)
+ Nếu \(a\)\(;\)\(b\) không chia hết cho 3 \(\Rightarrow\) \(a^2;\)\(b^2\)chia 3 dư 1
khi đó \(a^2+b^2\) chia 3 dư 2 \(\Rightarrow\)\(c^2\) chia 3 dư 2 (vô lý)
\(\Rightarrow\)trường hợp \(a\)và \(b\) không chia hết cho 3 không xảy ra \(\Rightarrow\) \(abc\)\(⋮\)\(3\) \(\left(1\right)\)
+ Nếu \(a\)\(;\)\(b\) không chia hết cho 5 \(\Rightarrow\)\(a^2\) chia 5 dư 1 hoặc 4 cà \(b^2\) chia 5 dư 1 hoặc 4
- Nếu \(a^2\) chia 5 dư 1 và \(b^2\) chia 5 dư 1 \(\Rightarrow\) \(c^2\) chia 5 dư 2 (vô lí)
- Nếu \(a^2\) chia 5 dư 1 và \(b^2\) chia 5 dư 4 \(\Rightarrow\) \(c^2\) chia 5 dư 0 \(\Rightarrow\) \(c\)\(⋮\)\(5\)
- Nếu \(a^2\) chia 5 dư 4 và \(b^2\) chia 5 dư 1 \(\Rightarrow\) \(c^2\) chia 5 dư 0 \(\Rightarrow\) \(c\) \(⋮\)\(5\)
- Nếu \(a^2\) chia 5 dư 4 và \(b^2\) chia 5 dư 4 \(\Rightarrow\) \(c^2\) chia 5 dư 3 (vô lí). Vậy ta luôn tìm được một giá trị của \(a,\)\(b,\)\(c\)thỏa mãn \(abc\)\(⋮\)\(5\) \(\left(2\right)\)
+ Nếu \(a,\)\(b,\)\(c\) không chia hết cho 4 \(\Rightarrow\) \(a^2,\)\(b^2,\)\(c^2\) chia 8 dư 1 hoặc 4
khi đó \(a^2+b^2\) chia 8 dư \(0,\)\(2\)hoặc
\(\Rightarrow\) c2:5 dư 1,4. vô lý => a hoặc b hoặc c chia hết cho 4 (3)
Từ (1) (2) và (3) => abc chia hết cho 60
a) Đúng vì số tự nhiên chia hết cho 2 có chữ số tận cùng là 0; 2; 4; 6; 8
b) Sai vì số tự nhiên chia hết cho 2 có chữ số tận cùng là 0; 2; 4; 6; 8
c) Sai vì số chia hết cho 5 thì có chữ số tận cùng bằng 0 và 5
d) Đúng