Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn tâm (O). Vẽ đường cao BE, CF. Kẻ đường kính AK của (O). CMR:
a) B, C, E, F cùng thuộc một đường tròn.
b) BHCK là hình bình hành
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác BFEC có
\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)
nên BFEC là tứ giác nội tiếp
hay B,F,E,C cùng thuộc một đường tròn
Tâm I là trung điểm của BC
Tự vé hình nhé.
Gọi M là trung điểm của BC
=> ME là đường trung tuyến ứng với cạnh huyền của tam giác vuông EBC => ME=MB=MC (1)
=> MF ...........................................................................................FBC => MF=MB=MC (2)
(1)(2) => ME=MF=MB=MC
=> 4 điểm E,F,B,C cùng thuộc dường tròn tâm M đường kính BC
b, Đường cao của đường tròn là gì hả bạn??
Tích cho mình nhé
Tý Giải tiếp nếu đè bài đúng
đề bài đâu có I bạn ơi
a,
b, AK là đường kính=>tam giác ACK nội tiếp(O)
=>\(KC\perp AC\)
mà BE là đường cao=>\(BH\perp AC=>BH//KC\left(1\right)\)
làm tương tự \(=>CH//BK\left(2\right)\)
(1)(2)=>BHCK là hinh bình hành
còn điểm I ấy chắc là trung điểm của BC chăng?(đề chắc thiếu)
=>I cũng là trung điểm HK=>H,I,K thẳng hàng
a: góc AEB=góc AHB=90 độ
=>AEHB nội tiếp
Xét ΔAHB vuông tại H và ΔACD vuông tại C có
góc ABH=góc ADC
=>ΔAHB đồng dạng với ΔACD
b: góc HAC+góc AHE
=góc ABE+90 độ-góc HAB
=90 độ
=>HE vuông góc AC
=>HE//CD
\(a,\) Vì \(\widehat{BEC}=\widehat{BFC}=90^0\) nên BFEC nội tiếp
Do đó B,C,E,F cùng thuộc 1 đường tròn
\(b,\) H là điểm nào?