K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2021

\(PT\Leftrightarrow-5x^2-24x+60=\left(x^2+5x-10\right)^2\\ \Leftrightarrow-5x^2-24x+60=x^4+10x^3+5x^2-100x+100\\ \Leftrightarrow x^4+10x^3+10x^2-76x+40=0\\ \Leftrightarrow x^4+4x^3-10x^2+6x^3+24x^2-60x-4x^2-16x+40=0\\ \Leftrightarrow\left(x^2+4x-10\right)\left(x^2+6x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+4x-10=0\\x^2+6x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2+\sqrt{14}\\x=-2-\sqrt{14}\\x=-3+\sqrt{13}\\x=-3-\sqrt{13}\end{matrix}\right.\)

22 tháng 11 2021

Goắt a ziu đú ình men :)

28 tháng 9 2021

\(a,\Leftrightarrow\left\{{}\begin{matrix}5x+15y=-10\\5x-4y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}19y=-21\\5x-4y=11\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{21}{19}\\5x-4\left(-\dfrac{21}{19}\right)=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{25}{19}\\y=-\dfrac{21}{19}\end{matrix}\right.\)

\(c,\Leftrightarrow\left\{{}\begin{matrix}3x+5y=1\\10x-5y=-40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+5y=1\\13x=-39\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=2\end{matrix}\right.\\ d,\Leftrightarrow\left\{{}\begin{matrix}5x-10y=-30\\5x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x-3y=5\\-7y=-35\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=5\end{matrix}\right.\\ e,\Leftrightarrow\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\2\left(x+y\right)+4\left(x-y\right)=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=6\\2\left(x+y\right)+3\cdot6=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-y=6\\x+y=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{13}{2}\end{matrix}\right.\)

 

25 tháng 2 2021

a) 8x-3=0

⇔8x=3

⇔x=\(\dfrac{3}{8}\)

Vậy...

b)  -5x+7=-3x-9

⇔-5x+3x=-9-7

⇔-2x=-16

⇔x=8

Vậy...

e)

\(\dfrac{1}{x-2}+4=\dfrac{x+3}{x-2}\)

\(\dfrac{1}{x-2}-\dfrac{x+3}{x-2}=4\)

\(\dfrac{-x-2}{x-2}=4\)

\(x+2=4x-8\)

\(-3x=-10\)

\(x=\dfrac{10}{3}\)

 

11 tháng 5 2020

ĐK \(\frac{-11}{5}\le x\le6\)

Ta có: \(\sqrt{5x+11}-\sqrt{6-x}+5x^2-14x-60=0\)

\(\Leftrightarrow\left(\sqrt{5x+11}-6\right)-\left(\sqrt{6-x}-1\right)+\left(x-5\right)\left(5x+11\right)=0\)

\(\Leftrightarrow\frac{5\left(x-5\right)}{\sqrt{5x+11}+6}+\frac{x-5}{\sqrt{6-x}+1}+\left(x-5\right)\left(5x+11\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left[\frac{5}{\sqrt{5x+11}+6}+\frac{1}{\sqrt{6-x}}+5x+11\right]=0\)

\(\Leftrightarrow x=5\)(Do \(\frac{5}{\sqrt{5x+11}+6}+\frac{1}{\sqrt{6-x}}+5x+11>0\)với \(\frac{-11}{5}\le x\le6\)

Vậy pt đã cho có nghiệm duy nhất x=5

25 tháng 11 2021

\(a,PT\Leftrightarrow\left|x+3\right|=3x-6\\ \Leftrightarrow\left[{}\begin{matrix}x+3=3x-6\left(x\ge-3\right)\\x+3=6-3x\left(x< -3\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\left(tm\right)\\x=\dfrac{3}{4}\left(ktm\right)\end{matrix}\right.\\ \Leftrightarrow x=\dfrac{9}{2}\\ b,PT\Leftrightarrow\left|x-1\right|=\left|2x-1\right|\\ \Leftrightarrow\left[{}\begin{matrix}x-1=2x-1\\1-x=2x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)

\(c,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=25x^2-20x+4\\ \Leftrightarrow25x^2-15x=0\\ \Leftrightarrow5x\left(5x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=\dfrac{3}{5}\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=0\\ d,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=2-5x\\ \Leftrightarrow x\in\varnothing\)

12 tháng 3 2021

Đề bài thiếu bạn ạ

5 tháng 12 2021

Đặt \(\sqrt{x^2+5x+10}=a\ge0\)

\(PT\Leftrightarrow a^2+2a-8=0\\ \Leftrightarrow a=2\left(a\ge0\right)\\ \Leftrightarrow x^2+5x+10=4\\ \Leftrightarrow x^2+5x+6=0\\ \Leftrightarrow\left[{}\begin{matrix}x_1=-2\\x_2=-3\end{matrix}\right.\Leftrightarrow x_1^2+x_2^2=4+9=13\)

Vậy ...

NV
30 tháng 12 2021

Đặt \(\sqrt{x^2+5x+10}=t>0\Rightarrow x^2+5x=t^2-10\)

Phương trình trở thành:

\(t^2-10+2+2t=0\)

\(\Leftrightarrow t^2+2t-8=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-4\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2+5x+10}=2\)

\(\Leftrightarrow x^2+5x+6=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)