K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2019

Chọn đáp án A

.

.

22 tháng 12 2016

(2x+5)(x+1)-(3x-2)(x+1)

=(x+1)(2x+5-3x+2)=(x+1)(-2x+7)

đồng nhất thức : x+1=ax+b => a=1;b=1 với mọi x

                           -2x+7=cx+d=>c=-2;d=7 với mọi x

vậy |a+b+c+d|=....

27 tháng 11 2021

\(2,\\ PT\Leftrightarrow6x^2+9y^2-\left(x^2+y^2\right)=20412\\ \text{Mà }20412⋮3;6x^2+9y^2⋮3\\ \Leftrightarrow x^2+y^2⋮3\Leftrightarrow x^2⋮3;y^2⋮3\Leftrightarrow x⋮3;y⋮3\)

Đặt \(\left\{{}\begin{matrix}x=3a\\y=3b\end{matrix}\right.\left(a,b\in Z\right)\Leftrightarrow5\left(3a\right)^2+8\left(3b\right)^2=20412\)

\(\Leftrightarrow9\left(5a^2+8b^2\right)=20412\\ \Leftrightarrow5a^2+8b^2=2268\)

Mà \(2268⋮3\Leftrightarrow5a^2+8b^2⋮3\Leftrightarrow a^2⋮3;b^2⋮3\Leftrightarrow a⋮3;b⋮3\)

Đặt \(\left\{{}\begin{matrix}a=3c\\b=3d\end{matrix}\right.\left(c,d\in Z\right)\Leftrightarrow9\left(5c^2+8d^2\right)=2268\Leftrightarrow5c^2+8d^2=252\)

Mà \(252⋮3\Leftrightarrow5c^2+8d^2⋮3\Leftrightarrow c^2⋮3;d^2⋮3\Leftrightarrow c⋮3;d⋮3\)

Đặt \(\left\{{}\begin{matrix}c=3k\\d=3q\end{matrix}\right.\left(k,q\in Z\right)\Leftrightarrow9\left(5k^2+8q^2\right)=252\Leftrightarrow5k^2+8q^2=28\)

\(\Leftrightarrow5k^2=28-8q^2\ge0\Leftrightarrow q^2\le\dfrac{28}{8}=3,5\\ \text{Mà }q\in Z\\ \Leftrightarrow-3\le q^2\le3\Leftrightarrow-1\le q\le1\)

\(\forall q=0\Leftrightarrow k^2=\dfrac{28}{5}\left(ktm\right)\\ \forall q=\pm1\Leftrightarrow k=\pm2\\ \Leftrightarrow\left(c;d\right)=\left(6;3\right);\left(-6;-3\right);\left(-6;3\right);\left(6;-3\right)\\ \Leftrightarrow\left(a;b\right)=\left(18;9\right)\left(-18;-9\right);\left(-18;9\right);\left(18;-9\right)\\ \Leftrightarrow\left(x;y\right)=\left(54;27\right);\left(-54;-27\right);\left(54;-27\right);\left(-54;27\right)\)

26 tháng 2 2019

a) F(x) = 1 -  cos x 2 + π 4

d) K(x) = 2 1 - 1 1 + tan x 2

19 tháng 5 2017

16 tháng 6 2019

Một họ gồm m phần tử đại diện cho m lớp tương đương nói trên được gọi là một hệ thặng dư đầy đủ modulo m. Nói cách khác, hệ thặng dư đầy đủ modulo m là tập hợp gồm m số nguyên đôi một không đồng dư với nhau theo môđun m.

(x1, x2, …, xm) là hệ thặng dư đầy đủ modulo m ó xi – xj không chia hết cho m với mọi 1 £ i < j £ m.

 

Ví dụ với m = 5 thì (0, 1, 2, 3, 4), (4, 5, 6, 7, 8), (0, 3, 6, 9, 12) là các hệ thặng dư đầy đủ modulo 5.

Từ định nghĩa trên, ta dễ dàng suy ra tính chất đơn giản nhưng rất quan trọng sau:

Tính chất 1: Nếu (x1, x2, …, xm) là một hệ thặng dư đầy đủ modulo m thì

a)     Với a là số nguyên bất kỳ (x1+a, x2+a, …, xm+a) cũng là một hệ thặng dư đầy đủ modulo m.

b)     Nếu (a, m) = 1 thì (ax1, ax2, …, axm) cũng là một hệ thặng dư đầy đủ  modulo m.

Với số nguyên dương m > 1, gọi j(m) là số các số nguyên dương nhỏ hơn m và nguyên tố cùng nhau với m. Khi đó, từ một hệ thặng dư đầy đủ mô-đun m, có đúng j(m) phần tử nguyên tố cùng nhau với m. Ta nói các phần tử này lập thành một hệ thặng dư thu gọn modulo m. Nói cách khác

            (x1, x2, …, xj(m)) là hệ thặng dư thu gọn modulo m ó (xi, m) = 1 và xi – xj không chia hết cho m với mọi 1 £ i < j £ j(m).

 

Ta có  

Tính chất 2: (x1, x2, …, xj(m)) là hệ thặng dư thu gọn modulo m và (a, m) = 1 thì

(ax1,a x2, …, axj(m))  cũng là một hệ thặng dư thu gọn modulo m.

 

Định lý Wilson. Số nguyên dương p > 1 là số nguyên tố khi và chỉ khi (p-1)! + 1 chia hết cho p.

 

Chứng minh. Nếu p là hợp số, p = s.t với s, t > 1 thì s £ p-1. Suy ra (p-1)! chia hết cho s, suy ra (p-1)! + 1 không chia hết cho s, từ đó (p-1)! + 1 không chia hết cho p. Vậy nếu (p-1)! + 1 chia hết cho p thì p phải là số nguyên tố.

~Hok tốt`

P/s:Ko chắc

17 tháng 6 2019

\(a< b< c< d< e< f\)

\(\Rightarrow a+c+e< b+d+f\)

\(\Rightarrow2\left(a+c+e\right)< a+b+c+d+e+f\)

\(\Rightarrow\frac{a+c+e}{a+b+c+d+e+f}< \frac{1}{2}\)

I. Trắc nghiệm khách quan (4 điểm) Trong mỗi câu từ câu 1 đến câu 16 đều có 4 phương án trả lời A, B, C, D; trong đó chỉ có một phương án đúng. Hãy khoanh tròn chữ cái đứng trước phương án đúng. Câu 1: Kết quả của phép tính 25 6 − − là: A. 31 B. 19 C. −31 D. −19. Câu 2: Cho x = −−+ − ( ) 135 . Số x bằng: A. 1 B. 3 C. −3 D. −9. Câu 3: Kết quả của phép tính: 45 9(13 5) − + là: A. 473 B. 648 C....
Đọc tiếp

I. Trắc nghiệm khách quan (4 điểm) Trong mỗi câu từ câu 1 đến câu 16 đều có 4 phương án trả lời A, B, C, D; trong đó chỉ có một phương án đúng. Hãy khoanh tròn chữ cái đứng trước phương án đúng. Câu 1: Kết quả của phép tính 25 6 − − là: A. 31 B. 19 C. −31 D. −19. Câu 2: Cho x = −−+ − ( ) 135 . Số x bằng: A. 1 B. 3 C. −3 D. −9. Câu 3: Kết quả của phép tính: 45 9(13 5) − + là: A. 473 B. 648 C. −117 D. 117. Câu 4: Số nguyên x thoả mãn 1 6 19 − x = là A. 24 B. −3 C. 2 D. 1. Câu 5: Kết quả của phép tính 2007 2.( 1) − là A. −4014 B. 4014 C. −2 D. 1. Câu 6: Kết quả của phép tính 6 5 32 ( 3) : ( 3) ( 2) : 2 − − +− là: A. 1 B. −5 C. 0 D. −2. Câu 7: Biết 2 3 của số a bằng 7,2. Số a bằng: A. 10,8 C. 3 2 B. 1,2 D. 142 30 . Câu 8: 0,25% bằng A. 1 4 B. 1 400 C. 25 100 D. 0,025. Câu 9: Tỉ số phần trăm của 5 và 8 là: A. 3% B. 62,5% C. 40% D. 160% Câu 10: Kết quả của phép tính 3 ( 15). 1 5 − − là: A. 0 B. -2 C. −10 D. 1 5 . Câu 11: Cho 3 11 : 11 3 x = thì: A. x = −1 B. x =1 C. 121 9 x = D. 9 121 x = . 

2
10 tháng 9 2017

Cậu có thể cách dòng ra được không? Tớ nhìn không biết câu nào với câu nào cả

Kết quả phép tính 4 phần 5 + 5 phần 6