K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2016

Số số hạng của tổng trên là:

          (999-1):2+1=500(số)

Tổng trên là:

              (999+1)*500:2=250000

28 tháng 1 2016

số số hạng (999 - 1 ) : 2 + 1 = 500

tổng (999 + 1 ) x 500 : 2 = 250 000

25 tháng 6 2017

Bài 1: Tính B = 1 + 2 + 3 + ... + 98 + 99

                             Lời giải:

B = 1 + (2 + 3 + 4 + ... + 98 + 99).

Ta thấy tổng trong ngoặc gồm 98 số hạng, nếu chia thành các cặp ta có 49 cặp nên tổng đó là:

              (2 + 99) + (3 + 98) + ... + (51 + 50) = 49.101 = 4949

Khi đó B = 1 + 4949 = 4950

Bài 2: Tính C = 1 + 3 + 5 + ... + 997 + 999

                                                             Lời giải:

Từ 1 đến 1000 có 500 số chẵn và 500 số lẻ nên tổng trên có 500 số lẻ.

Áp dụng các bài trên ta có:

 C = (1 + 999) + (3 + 997) + ... + (499 + 501) = 1000.250 = 250.000 (Tổng trên có 250 cặp số)

25 tháng 6 2017

Bài 1: Tính B = 1 + 2 + 3 + ... + 98 + 99

Số các số hạng của dãy số trên là :

 ( 99 - 1 ) : 1 + 1 = 99 ( số hạng )

Tổng của dãy số tren là :

 \(\frac{\left(99+1\right).99}{2}=4950\)

                         Đ/S : 4950

Bài 2: Tính C = 1 + 3 + 5 + ... + 997 + 999

Số các số hạng của dãy số trên là :

 ( 999 - 1 ) : 2 + 1 = 500 ( số hạng )

Tổng của dãy số trên là :

 \(\frac{\left(999+1\right).500}{2}=250000\)

                                  Đ/S : 250 000

22 tháng 11 2021

Sao giống bài tính tổng lớp 3 z :v

22 tháng 11 2021

thế bạn làm đi

tuyệt đối ko chép mạng mà giải đc 2 cách

2,

C= (999+1)+(998+2)+...+(553+447)

= 1000.250

=250 000

C2:

C=[(999-1):2+1].(999+1):2

=250 000

12 tháng 3 2020

Bài 1

Ta có

3A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3

=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]

=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)] 

=n.(n+1).(n+2) 

=>S=[n.(n+1).(n+2)] /3

18 tháng 4 2016

B = 4950

C = 250000

D = 249224

8 tháng 1 2016

1: 4950

2: 250000

 

7 tháng 1 2016

Bài 1:

Số các số hạng có là:

( 99 - 1 ) : 1 + 1 = 99 ( số )

Tổng là:

( 99 + 1 ) x 99 : 2 = 4950

Bài 2:

Số số hạng có là:

( 999 - 1 ) : 2 + 1 = 500 ( số )

Tổng là:

( 999 + 1 ) x 500 : 2 = 250000

23 tháng 2 2018

Bài 1 : \(B=1+2+3+...+98+99=\frac{\left(99+1\right).99}{2}=4950\)

Bài 2 : \(C=1+3+5+...+997+999=\frac{\left(999+1\right).499}{2}=249500\)

Bài 3 : \(D=10+12+14+...+996+998=\frac{\left(998+10\right).495}{2}=249480\)

Mấy bài này áp dụng công thức nhé bạn 

23 tháng 2 2018

mình

ví dụ : B= 99*100/2=9900/2=4950

26 tháng 7 2017

K MIK NHA BẠN ^^

Tính B= 1 + 2 + 3 + ... + 98 + 99
Tính C = 1 + 3 + 5 + ... + 997 + 999
Tính D = 10 + 12 + 14 + ... + 994 + 996 + 998

4A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3

=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]

=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)] 

=n.(n+1).(n+2) 

=>S=[n.(n+1).(n+2)] /3

26 tháng 7 2017

Bài 1: C = (999+1). [(999-1):2+1]: 2= 250000

Bài 2: B = (99+1). [(99-1):2+1]: 2= 2500

Bài 3: D = (998+10). [(998-10):2+1]: 2= 249480

Bài 4: 3S= 1.2.3 + 2.3.3 + 3.4.3+...+n.(n+1).3

              = 1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+.....+n.(n+1).[(n+2)-(n-1)]

              = 1.2.3+2.3.4+2.3+3.4.5-2.3.4+.....+n.(n+1).(n+2)-n.(n+1)-(n-1)

              =n.(n+1).(n+2)

              => A = \(\frac{n.\left(n+1\right).\left(n+2\right)}{3}\)

Tính C = 1 + 3 + 5 +...+ 997 + 999

Từ 1 đến 1000 có 500 số chẵn và 500 số lẻ nên tổng trên có 500 số lẻ. Áp dụng các bài trên ta có

C = (1 + 999) + (3 + 997)+...+ (499 + 501)= 1000.250 = 250000 (Tổng trên có 250 cặp số)

25 tháng 6 2016

Bài 1: B = 1 + 2 + 3 + ... + 98 + 99

Số số hạng:

(99 - 1) + 1 = 99 (số hạng)

Tổng trên là:

(99 + 1) . (98 : 2) + 50 = 4950

Bài 2: C = 1 + 3 + 5 + ... + 997 + 999

Số số hạng:

(999 - 1) : 2 +1 = 500 (số hạng)

Tổng trên là:

(999 + 1) . (500 : 2) = 250 000

Bài 3. D = 10 + 12 + 14 + ... + 994 + 996 + 998

Số số hạng:

(998 - 10) : 2 + 1 = 495 (số hạng)

Tổng trên là:

(998 + 10) . (494 : 2) + 248 = 249 224

25 tháng 6 2016

Bài 1: Tính B = 1 + 2 + 3 + ... + 98 + 99

B = 1 + (2 + 3 + 4 + ... + 98 + 99).

Ta thấy tổng trong ngoặc gồm 98 số hạng, nếu chia thành các cặp ta có 49 cặp nên tổng đó là:

(2 + 99) + (3 + 98) + ... + (51 + 50) = 49.101 = 4949

Khi đó B = 1 + 4949 = 4950

Ta có thể tính tổng B theo cách khác như sau:

Các dạng toán nâng cao lớp 7

Bài 2: Tính C = 1 + 3 + 5 + ... + 997 + 999

Từ 1 đến 1000 có 500 số chẵn và 500 số lẻ nên tổng trên có 500 số lẻ. Áp dụng các bài trên ta có C = (1 + 999) + (3 + 997) + ... + (499 + 501) = 1000.250 = 250.000 (Tổng trên có 250 cặp số)

Bài 3. Tính D = 10 + 12 + 14 + ... + 994 + 996 + 998

Ta có:

10 = 2.4 + 2

12 = 2.5 + 2

14 = 2.6 + 2

...

998 = 2 .498 + 2

Tương tự bài trên: từ 4 đến 498 có 495 số nên ta có số các số hạng của D là 495, mặt khác ta lại thấy:  495 = (998 - 10)/2 + 1 hay số các số hạng = (số hạng đầu - số hạng cuối) : khoảng cách rồi cộng thêm 1

Khi đó ta có:

 D = 10 + 12 = ... + 996 + 998

+D = 998 + 996  ... + 12 + 10

 

 2D = 1008  1008 + ... + 1008 + 1008

2D = 1008.495 → D = 504.495 = 249480

Thực chất  D = (998 + 10).495 / 2

Qua các ví dụ trên, ta rút ra một cách tổng quát như sau: Cho dãy số cách đều u1, u2, u3, ... un (*), khoảng cách giữa hai số hạng liên tiếp của dãy là d.

Khi đó số các số hạng của dãy (*) là: 

Tổng các số hạng của dãy (*) là: 

Đặc biệt từ công thức (1) ta có thể tính được số hạng thứ n của dãy (*) là: un = u1 + (n - 1)d
Hoặc khi u1 = d = 1 thì