K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2019

ĐÁP ÁN: C

30 tháng 7 2017


18 tháng 5 2017

ĐÁP ÁN: C

30 tháng 3 2018

Đáp án C

Gọi z=a+bi

Để  là số thuần ảo

Vậy có 4 số phức thỏa mãn yêu cầu đề bài.

15 tháng 11 2017

Đáp án C.

Đặt z = x + yi x , y ∈ ℝ , ta có z 2 = x + y i 2 = x 2 - y 2 + 2 x y i  là số thuần ảo

⇔ x 2 - y 2 = 0 2 x y ≠ 0   ( 1 ) . 

Mặt khác z - i = 2 ⇔ x + y - 1 i = 2 ⇔ x 2 + y - 1 2 = 2    (2).

Từ (1),(2) suy ra x 2 = y 2 x 2 + y - 1 2 = 2 ⇔ x 2 = y 2 y 2 + y - 1 2 = 2 ⇒  có 4 số phức cần tìm.

4 tháng 7 2017

7 tháng 3 2019

13 tháng 3 2017

NV
18 tháng 5 2021

Đặt \(z=x+yi\Rightarrow x^2+y^2=2\)

\(\left(z+2i\right)\left(\overline{z}-2\right)=\left(x+\left(y+2\right)i\right)\left(x-2-yi\right)\)

\(=x\left(x-2\right)+y\left(y+2\right)+\left[\left(x-2\right)\left(y+2\right)-xy\right]i\)

\(=x^2+y^2-2x+2y+\left(2x-2y-4\right)i\)

Số phức đã cho thuần ảo khi \(\left\{{}\begin{matrix}x^2+y^2=2\\x^2+y^2-2x+2y=0\\2x-2y-4\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=2\\y=x-1\\x-y-2\ne0\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(\dfrac{1+\sqrt{3}}{2};\dfrac{1-\sqrt{3}}{2}\right);\left(\dfrac{1-\sqrt{3}}{2};\dfrac{1+\sqrt{3}}{2}\right)\)

Có 2 số phức thỏa mãn

23 tháng 9 2018