Cho tam giác ABC, M là một điểm bất kỳ trên BC và M khác trung điểm BC. Hãy vẽ qua M một đường thẳng sao cho đường thẳng đó chia tam giác ABC thành hai phần có diện tích bằng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử BM<MC khi đó: S(AMB)<S(AMC)
Đặt I là trung điểm BC. Nối AM, AI. Qua I kẻ đường thẳng song song với AM và cắt AC tại N và AI giao với MN tại O.
Đường thẳng MN chính là đường thẳng cần phải vẽ.
Thật vây, tứ giác ANIM là hình thang nên S(AON)=S(MOI)
Mặt khác:
S(AIC)=1/2S(ABC)=S(AON)+S(CION)=S(MOI)+S(CION)=S(CMN)
Vẽ tam giác ABC Lấy BC ở phía trên đáy dưới là AC cho dễ vẽ. Nối MA từ B kẻ BE song song với MA cắt CA kéo dài tại E. Ta có BEAM là hình thang. vậy S(MAE)= S(BAM) (vì chung đáy MA và chung chiều cao là hình thang) Vậy S(MAC)+ S(MAE)= S(MCA)+S(EAM) Hay S(MEC)= S(ABC) Xác ddingj trung điểm N của EC . Nối MN ta được đường thẳng cần kẻ. Bài toán đã giải xong. Mình không vẽ hình bạn đọc tự vẽ nhé.
Vẽ tam giác ABC Lấy BC ở phía trên đáy dưới là AC cho dễ vẽ.
Nối MA từ B kẻ BE song song với MA cắt CA kéo dài tại E.
Ta có BEAM là hình thang. vậy S(MAE)= S(BAM) (vì chung đáy MA và chung chiều cao là hình thang)
Vậy S(MAC)+ S(MAE)= S(MCA)+S(EAM)
Hay S(MEC)= S(ABC)
Xác ddingj trung điểm N của EC . Nối MN ta được đường thẳng cần kẻ.
Bài toán đã giải xong. Mình không vẽ hình bạn đọc tự vẽ nhé.
MB < MC => SABM < SACM => Điểm N là giao của đường thẳng d thỏa mãn đề bài với cạnh AC, nằm trong AC. Gọi I là trung điểm AC. Lúc đó SMNC = SBCI . Gọi P, Q tương ứng là hình chiều của I, N trên BC. => IP/NQ = BC/CM = CP/CQ . B, C, I, P cố định => xác định được Q từ đó tìm ra N.
????
Mình không hiểu câu trả lời của bạn Hà Chí Trung cho lắm
Giả sử BM<MC khi đó: S(AMB)<S(AMC) Đặt I là trung điểm BC. Nối AM, AI. Qua I kẻ đường thẳng song song với AM và cắt AC tại N và AI giao với MN tại O. Đường thẳng MN chính là đường thẳng cần phải vẽ. Thật vây, tứ giác ANIM là hình thang nên S(AON)=S(MOI) Mặt khác: S(AIC)=1/2S(ABC)=S(AON)+S(CION)=S(MOI)+S(CION)=S(CMN)