Cho hàm số y = - x 3 + 3 x 2 - 4 có đồ thị (C) như hình bên. Tất cả các giá trị thực của tham số m để phương trình x 3 - 3 x 2 + m = 0 có hai nghiệm phân biệt là:
A. m=0 hoặc m=-4
B. m=0 hoặc m=4
C. m=0
D. m=-4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Từ đồ thị hàm số đã cho (như hình vẽ) ta suy ra đồ thị của hàm số
Từ đó ta có kết quả thỏa mãn yêu cầu bài toán
:
Chọn D.
Để phương trình f(x)=m+2 có 4 nghiệm phân biệt thì đường thẳng y=m+2 phải cắt đồ thị hàm số y=f(x) tại 4 điểm phân biệt.
Dựa vào đồ thị ta được -4<m+2<-3 => -6<m<-5
Đáp án A
(*)
Đặt
Yêu cầu bài toán trở thành: Tìm m để phương trình có nghiệm
Từ đồ thị đã cho, ta suy ra đồ thị của hàm số
Từ đó ta có kể quả thỏa mãn yêu cầu bài toán
Đáp án C.
- Lấy đối xứng phần đồ thị hàm số y = f(x) nằm phía dưới trục hoành lên phía trên trục hoành ta được đồ thị hàm số y = |f(x)| (như hình bên). - Số nghiệm của phương trình |f(x)| = m là số giao điểm của đồ thị hàm số y = |f(x)| với đường thẳng y = m. Phương trình |f(x)| = m có 6 nghiệm thực phân biệt ⇔ 1 < m < 2.
Đáp án C
Phương pháp:
- Vẽ đồ thị hàm số y = f x từ đồ thị hàm số y = f x : giữ nguyên phần đồ thị phía trên trục hoành và lấy đối xứng phần đồ thị phía dưới qua trục hoành.
- Điều kiện để phương trình f x = 2 m 2 − m + 3 có 6 nghiệm phân biệt là đường thẳng y = 2 m 2 − m + 3 cắt đồ thị hàm số y = f x tại 6 điểm phân biệt.
Cách giải:
Ta có đồ thị hàm số y = f x .
Lúc này, để phương trình f x = 2 m 2 − m + 3 có 6 nghiệm phân biệt thì đường thẳng y = 2 m 2 − m + 3 cắt đồ thị hàm số y = f x tại 6 điểm phân biệt.
Chú ý khi giải:
HS thường nhầm lẫn cách vẽ các đồ thị hàm số y = f x và y = f x , hoặc ở bước giải bất phương trình kết hợp nghiệm sai dẫn đến chọn sai đáp án.