Tìm số nguyên n biết a)3n-1 chia hết cho n+2
b)n^2-2 chia hết cho n+5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
n-6 chia hết cho n-1
=>(n-1)-5 chia hết cho n-1
=>n-1 E U(5)={1;-1;5;-5}
=>n E {0;2;6;-4}
vì n E N => n E{0;2;6}
b/3n+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
=>5 chia hết cho n-1
=>n-1 E U(5)={1;-1;5;-5}
=>n E {0;2;6;-4}
vì n E N => n E{0;2;6}
c/
3n+24 chia hết cho n-4
=>3(n-4)+36 chia hết cho n-4
=>36 chia hết cho n-4
=>n-4 E U(36) ={1;-1;2;-2;3;-3;4;-4;9;-9;12;-12;18;-18;36;-36}
=> =>n E {5;3;6;2;7;1;8;0;13;-5;16;-8;22;-14;40;-32}
vì n E N
=>n E {0;1;3;5;6;7;8;13;16;22;40;}
.........mỏi tay V~
a, n-6 chia hết cho n-1
=> n-1-5 chia hết cho n-1
=> -5 chia hết cho n-1
=> n-1 thuộc Ư(-5)= -5;-1;1;5
Sau đó bạn kẻ bảng ra. Những câu sau làm tương tự, bạn chỉ cần biến đổi sao cho vế phải có dạng là 1 tích và 1 số nguyên, tích đó chia hết cho vế trái, rồi suy ra vế trái thuộc ước của số nguyên đó là được. Chọn nha
a, n+2 chia hết cho n-1
=> n-1+3 chia hết cho n-1
=> 3 chia hết cho n-1
=> n-1 thuộc ước của 3
=> n-1 thuộc {-3;-1;1;3}
=> n thuộc {-2;0;2;4}
b, 3n-5 chia hết cho n-2
=> 3n-6+1 chia hết cho n-2
=> 3(n-2)+1 chia hết cho n-2
=> 1 chia hết cho n-2
=> n-2 là ước của 1
=> n-2 thuộc {-1;1}
=> n thuộc {1;3}
11,
a, 4x-3\(\vdots\) x-2 1
x-2\(\vdots\) x-2\(\Rightarrow\) 4(x-2)\(\vdots\) x-2\(\Rightarrow\) 4x-8\(\vdots\) x-2 2
Từ 1 và 2 ta có:
(4x-3)-(4x-8)\(\vdots\) x-2
\(\Rightarrow\) 4x-3-4x+8\(\vdots\) x-2
\(\Rightarrow\) 5 \(\vdots\) x-2
\(\Rightarrow\) x-2\(\in\) Ư(5)
\(\Rightarrow\) x-2\(\in\){-5;-1;1;5}
\(\Rightarrow\) x\(\in\) {-3;1;3;7}
Vậy......
Phần b và c làm tương tự như phần a pn nhé!
a) \(3n+2⋮n-1\Rightarrow3\left(n-1\right)+5⋮n-1\)
Suy ra \(5⋮n-1\Rightarrow n-1\inƯ\left(5\right)=\left(1;-1;5;-5\right)\)
Với n - 1 = 1 => n = 2
Với n - 1 = -1 => n = 0
Với n - 1 = 5 => n = 6
Với n - 1 = -5 => n = -4
Vậy \(n\in\left(2;0;6;-4\right)\)
Tìm số nguyên n sao cho
a, [3n+2]chia hết cho[n-1]
b,[3n+24]chia hết cho[n-4]
c,[n2+5]chia hết cho[n+1]
a,3n+2 chia hết cho n-1
=>3n-3+5 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
Mà 3(n-1) chia hết cho n-1
=>5 chia hết cho n-1
=>n-1\(\in\)Ư(5)={-5,-1,1,5}
=>n\(\in\){-4,0,2,6}
b,3n+24 chia hết cho n-4
=>3n-12+36 chia hết cho n-4
=>3(n-4)+36 chia hết cho n-4
Mà 3(n-4) chia hết cho n-4
=>36 chia hết cho n-4
Bạn làm tiếp nha
c,n2+5 chia hết cho n+1
=>n2-1+6 chia hết cho n+1
=>(n-1).(n+1)+6 chia hết cho n+1
Mà (n-1).(n+1) chia hết cho n+1
=>6 chia hết cho n+1
Bạn tự làm tiếp nha
a, 3n-5chia hết cho n-2
suy ra 3(n-2)-7chia hết cho n-2
suy ra 7 chia hết cho n-2
suy ra n-2E{1,-1,7,-7}
suy ra nE{3,1,9,-5}
b,n2-7 chia hết cho n+3
suy ra n(n+3)-4chia hết cho n+3
suy ra 4 chia hết cho n+3
suy ra n+3E{1,-1,2,-2,4,-4}
suy ra nE{-2,-4,-1,-5,1,-7}
K CHO MIK NHA
CHÚC BN HỌC TỐT
\(a,\Rightarrow3\left(n+2\right)-7⋮\left(n+2\right)\\ \Rightarrow n+2\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\\ \Rightarrow n\in\left\{-9;-3;-1;5\right\}\\ b,\Rightarrow\left(n^2+5n-5n-25+23\right)⋮\left(n+5\right)\\ \Rightarrow\left[n\left(n+5\right)-5\left(n+5\right)+23\right]⋮\left(n+5\right)\\ \Rightarrow n+5\inƯ\left(23\right)=\left\{-23;-1;1;23\right\}\\ \Rightarrow n\in\left\{-28;-6;-4;18\right\}\)
Lời giải:
a.
$3n-1\vdots n+2$
$\Rightarrow 3(n+2)-7\vdots n+2$
$\Rightarrow 7\vdots n+2$
$\Rightarrow n+2\in \left\{\pm 1; \pm 7\right\}$
$\Rightarrow n\in\left\{-1; -3; 5; -9\right\}$
b.
$n^2-2\vdots n+5$
$\Rightarrow n(n+5)-5(n+5)+23\vdots n+5$
$\Rightarrow (n+5)(n-5)+23\vdots n+5$
$\Rightarrow 23\vdots n+5$
$\Rightarrow n+5\in\left\{\pm 1;\pm 23\right\}$
$\Rightarrow n\in\left\{-4; -6; 18; -28\right\}$