Trong không gian Oxyz, cho mặt cầu ( S ) : x - 2 2 + y - 4 2 + z + 6 2 = 24 và điểm A(-2;0;-2). Từ A kẻ các tiếp tuyến đến (S) với các tiếp điểm thuộc đường tròn ω . Từ điểm M di động nằm ngoài (S) và nằm trong mặt phẳng chứa ( ω ) , kẻ các tiếp tuyến đến (S) với các tiếp điểm thuộc đường tròn ( ω ' ) . Biết rằng khi ( ω ) và ( ω ' ) có cùng bán kính thì M luôn thuộc một đường tròn cố định. Tính bán kính r của đường tròn đó
A. r = 6 2
B. r = 3 10
C. r = 3 5
D. r = 3 2
Gọi (P) là mặt phẳng chứa đường tròn ( ω )
Mặt cầu (S) có tâm I(2;4;6) và có bán kính R = 24 = 2 6 . Ta có:
I A = 4 2 + 2 2 + 8 2 = 4 6
Do hai đường tròn ω và ω ' có cùng bán kính nên IA=IM = 4 6
Tam giác IAK vuông tại K nên ta có
I K 2 = I H . I A ⇒ I H = I K 2 I A = 24 4 6 = 6
Do H là tâm của đường tròn ω nên điểm H cố định.
Tam giác IHM vuông tại H nên ta có:
M H = I M 2 - I H 2 = 4 6 2 - 6 2 = 3 10
Do H cố định thuộc mặt phẳng (P), M di động trên mặt phẳng (P) và M H = 3 10 không đổi. Suy ra điểm M thuộc đường tròn có tâm là H và có bán kính r = H M = 3 10
Chọn đáp án B.