K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2019

3 tháng 3 2019

8 tháng 3 2017

Chọn đáp án A

9 tháng 12 2018

Chọn A

Chọn B

1 tháng 3 2017

12 tháng 1 2017

Đáp án B

Gọi G là trọng tâm tứ diện ABCD. Ta chứng minh G là tâm mặt cầu tiếp xúc với tất cả các cạnh của tứ diện.

Gọi M, N, P, Q, R, S lần lượt là trung điểm các cạnh AB, CD, BC, AD, AC, BD.

Ta có G là trung điểm của các đoạn MN, PQ, RS.

  Δ A C D = Δ B C D ⇒ A N = B N ⇒ Δ N A B cân tại N  ⇒ M N ⊥ A B

Tương tụ ta có  M N ⊥ C D .

Ta có: P Q = R S = M N = A N 2 − A M 2 = a 3 2 2 − a 2 4 = a 2 2 .

Suy ra  d G , A B = d G , C D = 1 2 M N = a 2 4 .

Chứng minh tương tự ta có  d G , A C = d G , A D = d G , B D = d G , B C = a 2 4

Vậy G là tâm mặt cầu tiếp xúc với tất cả các cạnh của tứ diện ABCD.

Bán kính mặt cầu R = a 2 4 . Suy ra thể tích khối cầu là  V = 4 3 π R 3 = 4 3 π a 2 4 3 = 2 π a 3 24 .

10 tháng 11 2018

Đáp án A