Gọi m 0 là giá trị của tham số m để đường thẳng đi qua điểm cực đại và cực tiểu của đồ thị hàm số y = x 3 - 6 m x + 4 cắt đường tròn tâm I(1;0), bán kính bằng 2 tại hai điểm phân biệt A, B sao cho diện tích tam giác IAB đạt giá trị lớn nhất. Mệnh đề nào sau đây đúng:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Đạo hàm : y’ = 3x2- 6mx
Để hàm số có cực đại và cực tiểu thì m≠ 0.
+ Giả sử hàm số có hai điểm cực trị là: A( 0; 4m3) ; B( 2m; 0) ; A B → = ( 2 m ; - 4 m 3 )
Trung điểm của đoạn AB là I (m; 2m3).
+ Điều kiện để đối xứng nhau qua đường thẳng x- y= 0 hay y= x là AB vuông góc với đường thẳng y= x và I ∈ ( d ) ⇔ 2 m - 4 m 3 = 0 2 m 3 = m
⇔ m = 0 h o ặ c m = ± 2 2
Kết hợp với điều kiện ta có: m = ± 2 2 .
Chọn D.
Chọn A
[Phương pháp trắc nghiệm]
y ' = 3 x 2 + 2 m x + 7
Bấm máy tính
Đường thẳng đi qua 2 điểm cực trị là
Ta có : \(y'=3x^2-6x+m^2\Rightarrow y'=0\Leftrightarrow3x^2-6x+m^2=0\left(1\right)\)
Hàm số có cực trị \(\Leftrightarrow\left(1\right)\) có 2 nghiệm phân biệt \(x_1;x_2\)
\(\Leftrightarrow\Delta'=3\left(3-m^2\right)>0\Leftrightarrow-\sqrt{3}< m< \sqrt{3}\)
Phương trình đường thẳng d' đi qua các điểm cực trị là : \(y=\left(\frac{2}{3}m^2-2\right)x+\frac{1}{3}m^2\)
=> Các điểm cực trị là :
\(A\left(x_1;\left(\frac{2}{3}m^2-2\right)x_1+\frac{1}{3}m^2+3m\right);B\left(x_2;\left(\frac{2}{3}m^2-2\right)x_2+\frac{1}{3}m^2+3m\right);\)
Gọi I là giao điểm của hai đường thẳng d và d' :
\(\Rightarrow I\left(\frac{2m^2+6m+15}{15-4m^2};\frac{11m^2+3m-30}{15-4m^2}\right)\)
A và B đối xứng đi qua d thì trước hết \(d\perp d'\Leftrightarrow\frac{2}{3}m^2-2=-2\Leftrightarrow m=0\)
Khi đó \(I\left(1;-2\right);A\left(x_1;-2x_1\right);B\left(x_2;-2x_2\right)\Rightarrow I\) là trung điểm của AB=> A và B đối xứng nhau qua d
Vậy m = 0 là giá trị cần tìm
Đáp án là A.
Ta có: y , = 3 x 2 - 6 m x = 0 ⇔ x = 0 x = 2 m
Để đồ thị hàm số có 2 cực trị thì m ≢ 0 suy ra A(0; 4 m 8 ),B(2m;0)
YCBT, ta có m = ± 1 2
Chọn D
y ' = 3 x 2 - 6 m x
Để hàm số có cực đại và cực tiểu thì m ≠ 0
Giả sử hàm số có hai điểm cực trị là
Trung điểm của đoạn AB là I ( m ; 2 m 3 )
Điều kiện để AB đối xứng nhau qua đường thẳng y = x là AB vuông góc với đường thẳng
( d ) : y = x v à I ∈ ( d )
Kết hợp với điều kiện ta có m = ± 2 2
Đáp án B
Ta có y ' = 3 x 2 + 3 3 a
Hàm sổ có cực trị ⇔ y ' = 0 có 2 nghiệm phân biệt ⇔ a < 0 .
Hàm số là hàm số lẻ nên đồ thị hàm số có tâm đối xứng là gốc tọa độ, do đó đường thẳng nối cực đại và cực tiểu của đồ thị hàm số luôn đi qua gốc tọa độ.
Chọn A
[Phương pháp trắc nghiệm]
y ' = 3 x 2 - 6 x - m
Hàm số có 2 cực trị m > -3 , gọi x 1 , x 2 là hai nghiệm của phương trình y ' = 0 ,
ta có: x 1 + x 2 = 2
Bấm máy tính
Hai điểm cực trị của đồ thị hàm số là
Gọi I là trung điểm của AB
⇒ I ( 1 ; - m )
Đường thẳng đi qua hai điểm cực trị là
Yêu cầu bài toán
Kết hợp với điều kiện thì m = 0
Chọn C