Cho đường tròn (C) có tâm I, bán kính R = a . Gọi M là điểm nằm ngoài (C) và I M = a 3 ; A là điểm thuộc (C) và MA tiếp xúc với (C); H là hình chiếu của A trên đường thẳng IM. Tính theo a thể tích V của khối tròn xoay tạo bởi hình tam giác MAH quay xung quanh trục IM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: OH*OM=OA^2=R^2
b: Xét tứ giác MAIO có góc MIO=góc MAO=90 độ
nên MAIO là tứ giác nội tiếp
b: Xét tứ giác MAIO có
\(\widehat{OIM}=\widehat{OAM}=90^0\)
Do đó: MAIO là tứ giác nội tiếp
a: OH*OM=OA^2=R^2
b: ΔOCD cân tại O
mà OI là đường trung tuyến
nên OI vuông góc với CD
Xét tứ giác OIAM có
góc OIM=góc OAM=90 độ
nên OIAM là tứ giác nội tiếp
c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có
góc HOK chung
Do đo: ΔOHK đồng dạng với ΔOIM
=>OH/OI=OK/OM
=>OI*OK=OH*OM=R^2=OC^2
mà CI vuông góc với OK
nên ΔOCK vuông tại C
=>KC là tiếp tuyến của (O)
a) Ta có: ΔOHA∼ΔOAM(g.g)ΔOHA∼ΔOAM(g.g)
⇔OHOA=OAOM⇔OA2=OH.OM=R2⇔OHOA=OAOM⇔OA2=OH.OM=R2
b) Ta có: ΔOAMΔOAM vuông tại A
ΔOIMΔOIM vuông tại I.
=> OM là cạnh huyền chung của hai tam giác trên
=> ˆOIM;ˆOAMOIM^;OAM^ cùng chắn OM
Vậy O, I, A, M cùng nằm trên đường tròn đường kính OM
c) Ta có: ΔOMI∼ΔOKH(g.g)ΔOMI∼ΔOKH(g.g)
⇔OIOH=OMOK⇔OI.OK=OH.OM=R2=OC2⇔OIOH=OMOK⇔OI.OK=OH.OM=R2=OC2⇒OCOK=OIOC⇒OCOK=OIOC
Xét ΔOCKvàΔOICΔOCKvàΔOIC
OCOK=OIOCOCOK=OIOC
ˆO:chungO^:chung
⇒ΔOCK∼ΔOIC(c.g.c)⇒ˆOCK=ˆOIC=90o⇒OC⊥OK⇒ΔOCK∼ΔOIC(c.g.c)⇒OCK^=OIC^=90o⇒OC⊥OK
=> KC là tiếp tuyến đường tròn (O; R)
a: OH*OM=OA^2=R^2
b: ΔOCD cân tại O
mà OI là đường trung tuyến
nên OI vuông góc với CD
Xét tứ giác OIAM có
góc OIM=góc OAM=90 độ
nên OIAM là tứ giác nội tiếp
c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có
góc HOK chung
Do đo: ΔOHK đồng dạng với ΔOIM
=>OH/OI=OK/OM
=>OI*OK=OH*OM=R^2=OC^2
mà CI vuông góc với OK
nên ΔOCK vuông tại C
=>KC là tiếp tuyến của (O)
a: Xét ΔOAM vuông tại A có AH là đường cao
nên OH*OM=OA^2=R^2 ko đổi
b: Xét tứ giác MAIO có
góc MAO=góc MIO=90 độ
nên MAIO là tứ giác nội tiếp
a: OH*OM=OA^2=R^2
b: ΔOCD cân tại O
mà OI là đường trung tuyến
nên OI vuông góc với CD
Xét tứ giác OIAM có
góc OIM=góc OAM=90 độ
nên OIAM là tứ giác nội tiếp
c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có
góc HOK chung
Do đo: ΔOHK đồng dạng với ΔOIM
=>OH/OI=OK/OM
=>OI*OK=OH*OM=R^2=OC^2
mà CI vuông góc với OK
nên ΔOCK vuông tại C
=>KC là tiếp tuyến của (O)