K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2018

Chọn A

NV
5 tháng 2 2021

Đề thiếu dữ liệu để xác định độ dài SA rồi bạn

27 tháng 8 2016

Ví dụ 4.png

\(\Delta ABD\) đều cạnh a.

\(\Rightarrow S_{ABD}=\frac{a^2\sqrt{3}}{4}\Rightarrow S_{ABCD}=2S_{ABD}=\frac{a^2\sqrt{3}}{2}\)

\(\Delta ABB'\)vuông tại B \(\Rightarrow BB'=AB\tan30^o=a\sqrt{3}V=B.h=S_{ABCD}.BB'=\frac{3a^3}{2}\)

27 tháng 8 2016

cảm ơn bạn

22 tháng 7 2017

Đáp án C

1 tháng 7 2019

Đáp án C

B D = a   ⇒ B O = a 2 ⇒ A O = a 2 - a 2 4 = a 3 2 ⇒ A C = a 3 A ' A , A B C D = A ' A , A ' B ' = A B ' A ' ⇒ A A ' = A ' B ' . tan 30 0 = a 3 3 ⇒ V = 1 3 a 3 3 1 2 a 3 . a = a 3 6

18 tháng 3 2019

Đáp án là A

28 tháng 5 2018

16 tháng 6 2023

 Gọi O là giao điểm của AC và BD. Dễ thấy \(\Delta OAB\) vuông tại O và \(OB=\dfrac{a\sqrt{3}}{2}\). Từ đó \(OA=\sqrt{AB^2-OB^2}=\sqrt{\left(\dfrac{\sqrt{3}}{2}a\right)^2-a^2}=\sqrt{\dfrac{1}{4}a^2}=\dfrac{a}{2}\) \(\Rightarrow AC=a\).

Vì \(SA\perp mp\left(ABCD\right)\) nên \(SA\perp AC\) tại A hay \(\Delta SAC\) vuông tại A. 

Lại có \(\tan SAC=\dfrac{SA}{AC}=\dfrac{a\sqrt{3}}{a}=\sqrt{3}\) nên \(\widehat{SAC}=60^o\), suy ra góc giữa SC và mp(ABCD) bằng 60o \(\Rightarrow\) Chọn A

 

16 tháng 6 2023

Chỗ \(\widehat{SAC}\) em sửa lại là \(\widehat{SCA}\) mới đúng ạ.

NV
5 tháng 4 2022

Đặt \(x=AA'\)

Ta có: \(\overrightarrow{AB'}=\overrightarrow{AA'}+\overrightarrow{AB}\) ; \(\overrightarrow{BD'}=\overrightarrow{BB'}+\overrightarrow{BD}=\overrightarrow{BB'}+\overrightarrow{BA}+\overrightarrow{BC}=\overrightarrow{AA'}-\overrightarrow{AB}+\overrightarrow{BC}\)

\(\Rightarrow\overrightarrow{AB'}.\overrightarrow{BD'}=\left(\overrightarrow{AA'}+\overrightarrow{AB}\right)\left(\overrightarrow{AA'}-\overrightarrow{AB}+\overrightarrow{BC}\right)\)

\(=AA'^2+\overrightarrow{AA'}\left(-\overrightarrow{AB}+\overrightarrow{BC}\right)+\overrightarrow{AB}.\overrightarrow{AA'}-AB^2+\overrightarrow{AB}.\overrightarrow{BC}\)

\(=x^2-a^2+AB.BC.cos120^0\)

\(=x^2-a^2-\dfrac{a^2}{2}=x^2-\dfrac{3a^2}{2}=0\)

\(\Rightarrow x=\dfrac{a\sqrt{6}}{2}\)

\(V=\dfrac{a\sqrt{6}}{2}.2.\dfrac{a^2\sqrt{3}}{4}=\dfrac{3a^3\sqrt{2}}{4}\)

NV
5 tháng 4 2022

undefined