K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2019

Chọn B

8 tháng 4 2017

Đáp án B.

Vì M,N lần lượt là trung điểm của BB' và CC' nên ta có:

Lại có:

Vậy tỉ số 

25 tháng 11 2017

Đáp án B

Vì M,N lần lượt là trung điểm của BB' và CC' nên ta có:

S M N C ' B ' = 1 2 S B C C ' B ' ⇒ V A ' . M N C ' B ' = 1 2 V A ' . B C C ' B ' = 1 2 V A B C . A ' B ' C ' - V A ' . A B C  

Lại có:

V A ' . A B C = 1 3 V A B C . A ' B ' C ' ⇒ V A ' . M N C ' B ' = 1 2 V A B C . A ' B ' C ' - 1 3 V A B C . A ' B ' C ' = 1 3 V A B C . A ' B ' C '   

Vậy tỉ số  V 1 V 2 = V A ' M N A B C V A ' . M N C ' B ' = V A B C . A ' B ' C ' - 1 3 V A B C . A ' B ' C ' 1 3 V A B C . A ' B ' C ' = 2

17 tháng 5 2019

Chọn B

Gọi K là trung điểm của AA' và V, VABC.KMNVA.KMN lần lượt là thể tích khối lăng trụ ABC. A'B'C' khối lăng trụ ABC. KMN và thể tích khối chóp A. MNK. Khi đó 

24 tháng 9 2018

Đáp án B

Phương pháp: Sử dụng công thức tính thể tích của khối chóp và tỉ lệ thể tích để làm bài toán.

Cách giải:

Vì M,N lần lượt là trung điểm của BB',CC'

Suy ra

19 tháng 5 2019

14 tháng 9 2018

12 tháng 1 2019

9 tháng 6 2019

12 tháng 10 2019

Đáp án D.

Phương pháp : Dựng thiết diện, xác định hai phần cần tính thể tích.

Sử dụng phân chia và lắp ghép các khối đa diện.

Cách giải : Gọi E = MN ∩ B'C' 

Kéo dài MP cắt AB tại D, cắt AA ‘ tại F.

Nối NF, cắt AC tại G.

Do đó thiết diện của lăng trụ khi cắt bởi mặt phẳng (MNP) là NEPDG.

Gọi V1 là thể tích khối đa diện chứa đỉnh A’ ta có :

Ta có: 

 

=> D là trung điểm của AB

Dễ dàng chứng minh được ∆ADG  đồng dạng ∆A’MN theo tỉ số  1 3

Áp dụng định lí Menelaus trong tam giác A’B’C’ ta có:

Áp dụng định lí Menelaus trong tam giác A’MN ta có:

 

Vậy 

=>  V 1 V 2 = 49 95