Cho hàm số y = f ( x ) = a x 3 + b x 2 + c x + d có đồ thị như hình bên. Tất cả các giá trị của m để phương trình f x + m - 1 = 0 có 3 nghiệm phân biệt là:
A. m=1.
B. m=2.
C. m= ± 1.
D. m=0.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D.
Để phương trình f(x)=m+2 có 4 nghiệm phân biệt thì đường thẳng y=m+2 phải cắt đồ thị hàm số y=f(x) tại 4 điểm phân biệt.
Dựa vào đồ thị ta được -4<m+2<-3 => -6<m<-5
Đồ thị hàm số |f(x)| được suy ra từ đồ thị hàm số f(x) bằng cách:
Giữ nguyên phần đồ thị hàm số f(x) phía trên trục hoành;
Lấy đối xứng qua trục hoành phần đồ thị phía dưới trục hoành của hàm số f(x)
Quan sát đồ thị suy ra phương trình |f(x)=m có hai nghiệm thực phân biệt
Chọn đáp án D.
Đáp án C.
- Lấy đối xứng phần đồ thị hàm số y = f(x) nằm phía dưới trục hoành lên phía trên trục hoành ta được đồ thị hàm số y = |f(x)| (như hình bên). - Số nghiệm của phương trình |f(x)| = m là số giao điểm của đồ thị hàm số y = |f(x)| với đường thẳng y = m. Phương trình |f(x)| = m có 6 nghiệm thực phân biệt ⇔ 1 < m < 2.