Cho tam giác ABC vuông tại A, đường cao AB. Gọi M, N lần lượt là tâm đường tròn nội tiếp các tam giác ABD và ACD. Đường thẳng MN cắt AB, AC lần lượt tại K, L. Gọi S và T lần lượt là diện tích tam giác ABC và AKL. Chứng minh S lớn hơn hoặc bằng 2T.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
22 tháng 12 2016
(Đề hay quá!)
Gọi \(X\) là trung điểm \(BC\). CM được \(DF,AI,MN\) đồng quy tại điểm ta gọi là \(K\).
Theo tính chất đường trung bình ta có \(MN\) song song \(AB\).
Do tam giác \(ABC\) vuông tại \(A\) cũng suy ra \(AB\) song song với \(IE\).
Áp dụng định lí Thales liên tục ta có:
\(\frac{AN}{IE}=\frac{MN}{MI}=\frac{KA}{KI}=\frac{AP}{ID}\).
Do \(ID=IE\) nên \(AN=AP\). Kết thúc chứng minh.