K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2021

Đề bài là: Tính cos2x 

Cảm ơn mn nhiều ạ!

18 tháng 5 2021

`sin3x sinx+sin(x-π/3) cos (x-π/6)=0`

`<=> 1/2 (cos2x - cos4x) + 1/2(-sin π/6 + sin (2x-π/2)=0`

`<=> cos2x-cos4x-1/2+ sin(2x-π/2)=0`

`<=>cos2x-cos4x-1/2+ sin2x .cos π/2 - cos2x. sinπ/2=0`

`<=> cos2x - cos4x - cos2x = 1/2`

`<=> cos4x = cos(2π)/3`

`<=>` \(\left[{}\begin{matrix}4x=\dfrac{2\text{π}}{3}+k2\text{π}\\4x=\dfrac{-2\text{π}}{3}+k2\text{π}\end{matrix}\right.\)

`<=>` \(\left[{}\begin{matrix}x=\dfrac{\text{π}}{6}+k\dfrac{\text{π}}{2}\\x=-\dfrac{\text{π}}{6}+k\dfrac{\text{π}}{2}\end{matrix}\right.\)

 

NV
29 tháng 7 2021

18.

Do D thuộc trục hoành nên tọa độ có dạng: \(D\left(a;0;0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AD}=\left(a-3;4;0\right)\\\overrightarrow{BC}=\left(4;0;-3\right)\end{matrix}\right.\)

\(AD=BC\Leftrightarrow\left(a-3\right)^2+4^2=4^2+\left(-3\right)^2\)

\(\Rightarrow\left(a-3\right)^2=9\Rightarrow\left[{}\begin{matrix}a=0\\a=6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}D\left(0;0;0\right)\\D\left(6;0;0\right)\end{matrix}\right.\)

19.

\(cos\left(\overrightarrow{a};\overrightarrow{b}\right)=\dfrac{2.\left(-1\right)+1.0+0.\left(-2\right)}{\sqrt{2^2+1^2+0^2}.\sqrt{\left(-1\right)^2+0^2+\left(-2\right)^2}}=-\dfrac{2}{5}\)

20.

\(\overrightarrow{OA}=\left(2;2;1\right)\Rightarrow OA=\sqrt{2^2+2^2+1^2}=3\)

NV
8 tháng 4 2022

1. Đề lỗi

2.

Đường tròn (C) tâm \(I\left(1;-1\right)\) bán kính \(R=\sqrt{1^2+\left(-1\right)^2-\left(-7\right)}=3\)

a.

\(d\left(I;D\right)=\dfrac{\left|1-1-4\right|}{\sqrt{1^2+1^2}}=2\sqrt{2}< R\)

\(\Rightarrow D\) cắt (C) tại 2 điểm phân biệt

b.

Gọi H là trung điểm MN \(\Rightarrow IH\perp MN\Rightarrow IH=d\left(I;D\right)=2\sqrt{2}\)

ÁP dụng định lý Pitago trong tam giác vuông IHM:

\(HM=\sqrt{IM^2-IH^2}=\sqrt{R^2-IH^2}=\sqrt{9-8}=1\)

\(\Rightarrow MN=2MH=2\)

\(S_{IMN}=\dfrac{1}{2}IH.MN=2\sqrt{2}\)

NV
8 tháng 4 2022

3.

Đường tròn (C) tâm \(I\left(2;3\right)\) bán kính \(R=\sqrt{2}\)

Đường còn (C') tâm \(I'\left(1;2\right)\) bán kính \(R'=2\sqrt{2}\)

Gọi tiếp tuyến chung của (C) và (C') là (d) có pt: \(ax+by+c=0\) với \(a^2+b^2\ne0\)

\(\Rightarrow\left\{{}\begin{matrix}d\left(I;\left(d\right)\right)=R\\d\left(I';\left(d\right)\right)=R'\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{\left|2a+3b+c\right|}{\sqrt{a^2+b^2}}=\sqrt{2}\left(1\right)\\\dfrac{\left|a+2b+c\right|}{\sqrt{a^2+b^2}}=2\sqrt{2}\end{matrix}\right.\)

\(\Rightarrow\left|a+2b+c\right|=2\left|2a+3b+c\right|\)

\(\Rightarrow\left[{}\begin{matrix}4a+6b+2c=a+2b+c\\4a+6b+2c=-a-2b-c\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}3a+4b+c=0\\5a+8b+3c=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}c=-3a-4b\\c=-\dfrac{5a+8b}{3}\end{matrix}\right.\)

Thế vào (1):

\(\Rightarrow\left[{}\begin{matrix}\dfrac{\left|2a+3b-3a-4b\right|}{\sqrt{a^2+b^2}}=\sqrt{2}\\\dfrac{\left|2a+3b-\dfrac{5a+8b}{3}\right|}{\sqrt{a^2+b^2}}=\sqrt{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left|a+b\right|=\sqrt{2\left(a^2+b^2\right)}\\\left|a+b\right|=3\sqrt{2\left(a^2+b^2\right)}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}a^2+2ab+b^2=2a^2+2b^2\\a^2+2ab+b^2=18a^2+18b^2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left(a-b\right)^2=0\\17a^2-2ab+17b^2=0\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow a=b\) \(\Rightarrow c=-3a-4b=-7a\)

Thế vào pt (d):

\(ax+ay-7a=0\Leftrightarrow x+y-7=0\)

10 tháng 3 2022

thi ?

25 tháng 12 2021

Câu tục ngữ: ''Không ai giàu ba họ không ai khó ba đời'' đề cập đến phương pháp luận chung nhất

của triết học.

Rút ra bài học

- Trong cuộc sống, sự giàu nghèo không chừa một ai. Có thể có những người từ giàu thành nghèo, hoặc từ nghèo thành giàu. Không ai tự nhiên giàu mà cũng không ai cố gắng mà nghèo khó suốt cả. Tất cả đều phụ thuộc vào sự cố gắng, chăm chỉ, nỗ lực của bản thân.

=> Do vậy, việc cần thiết nhất hiện tại là phải cố gắng học tập thật giỏi để trở thành người có ích cho xã hội.\, giúp đất nước phát triển hơn.

4:

a: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

góc BAC=90 độ

=>ABDC là hcn

=>ΔACD vuông tại C

b: Xét ΔKAB vuông tại A và ΔKCD vuông tại C có

KA=KC

AB=CD

=>ΔKAB=ΔKCD

=>KB=KD

c: Xét ΔACD có

DK,CM là trung tuyến

DK cắt CM tại I

=>I là trọng tâm

=>KI=1/3KD

Xét ΔCAB có

AM,BK là trung tuyến

AM cắt BK tại N

=>N là trọng tâm

=>KN=1/3KB=KI

AH
Akai Haruma
Giáo viên
22 tháng 11 2021

Câu 5:

$\frac{20}{\sqrt{5}}=\frac{20\sqrt{5}}{5}=4\sqrt{5}$

Câu 6:

\(\frac{3}{\sqrt{5}+\sqrt{2}}+\frac{3}{\sqrt{5}-\sqrt{2}}=3.\frac{\sqrt{5}-\sqrt{2}+\sqrt{5}+\sqrt{2}}{(\sqrt{5}+\sqrt{2})(\sqrt{5}-\sqrt{2})}=3.\frac{2\sqrt{5}}{5-2}=2\sqrt{5}\)

AH
Akai Haruma
Giáo viên
22 tháng 11 2021

Câu 7:

1. ĐKXĐ: $x\neq 1; x\geq 0$

\(A=\left[\frac{\sqrt{x}(\sqrt{x}+1)}{\sqrt{x}+1}+1\right]:\left[\frac{\sqrt{x}(\sqrt{x}-1)}{\sqrt{x}-1}-1\right]=(\sqrt{x}+1):(\sqrt{x}-1)\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

2.

\(A< 1\Leftrightarrow \frac{\sqrt{x}+1}{\sqrt{x}-1}-1<0\Leftrightarrow \frac{2}{\sqrt{x}-1}<0\)

\(\Leftrightarrow \sqrt{x}-1<0\Leftrightarrow x< 1\)

Kết hợp ĐKXĐ suy ra $0\leq x< 1$