Gọi S là tập các số có bốn chữ số khác nhau được lập nên từ các chữ số 0; 1; 2; 3; 5; 6; 9. Chọn một số từ tập S, tính xác suất để số được chọn luôn có mặt chữ số 9 và có tổng các chữ số là một số chẵn.
A. 17 60 .
B. 17 105 .
C. 4 21 .
D. 1 3 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài chính xác là gì nhỉ? Lấy ra 3 số từ tập đã cho, tính xác suất để trong 3 số có đúng 1 số có chữ số 3?
Số cách lập số có 3 chữ số phân biệt từ tập đã cho: \(4.4.3=48\)
Lấy ra 3 số bất kì: có \(C_{48}^3\) cách
Gọi số có 3 chữ số khác nhau lập từ các số nói trên và luôn có mặt chữ số 3 là abc
TH1: a=3: bc có \(A_4^2=12\) cách chọn
TH2: a khác 3: chọn a có 3 cách, số còn lại có 3 cách, hoán vị nó với 3 cách 2 cách \(\Rightarrow3.3.2=18\) số
\(\Rightarrow12+18=30\) số có mặt chữ số 3 và 18 số không có mặt chữ số 3
Chọn 3 số trong đó có đúng 1 số có mặt chữ số 3: \(C_{30}^1.C_{18}^2\) cách
Xác suất: \(P=\dfrac{C_{30}^1C_{18}^2}{C_{48}^3}=...\)
Không gian mẫu: \(A_7^3-A_6^2=180\) số
Các trường hợp số chữ số lẻ nhiều hơn số chữ số chẵn là: 3 chữ số đều lẻ, 2 chữ số lẻ 1 số chữ chẵn
- 3 chữ số đều lẻ: \(A_3^3=3\) số
- 2 chữ số lẻ 1 chữ số chẵn: chọn 2 chữ số lẻ từ 3 chữ số lẻ có \(C_3^2=3\) cách
+ Nếu chữ số chẵn là 0 \(\Rightarrow\) \(3!-2!=4\) cách hoán vị 3 chữ số
+ Nếu chữ số chẵn khác 0 \(\Rightarrow\) có 3 cách chọn chữ số chẵn và \(3!\) cách hoán vị các chữ số
\(\Rightarrow3+3.\left(4+3.3!\right)=69\) số
Xác suất: \(P=\dfrac{69}{180}=\dfrac{23}{60}\)
Chọn đáp án B
Phương pháp
Chia các TH sau:
TH1: a<b<c.
TH2: a=b<c.
TH3: a<b=c.
TH4: a=b=c.
Cách giải
Gọi số tự nhiên có 3 chữ số là a b c ¯ (0≤a,b,c≤9, a≠0).
=> S có 9.10.10=900 phần tử. Chọn ngẫu nhiên một số từ S => n(Ω)=900
Gọi A là biến cố: “Số được chọn thỏa mãn a≤b≤c”.
TH1: a<b<c. Chọn 3 số trong 9 số từ 1 đến 9, có duy nhất một cách xếp chúng theo thứ tự tăng dần từ trái qua phải nên TH này có C 9 3 số thỏa mãn.
TH2: a=b<c, có C 9 2 số thỏa mãn.
TH3: a<b=c có C 9 2 số thỏa mãn.
TH4: a=b=c có 9 số thỏa mãn.
⇒ n ( A ) = C 9 3 + 2 C 9 2 + 9 = 165
Vậy P ( A ) = 11 60 .
Đáp án A.
- Số số có 4 chữ số khác nhau lập được từ các chữ số đã cho là: 6. A 6 3 = 720.
- Số có mặt chữ số 9 và tổng các chữ số là số chẵn, có 2 trường hợp:
+ Ba chữ số còn lại lẻ → số đó được lập từ 4 chữ số 1; 3; 5; 9 → có 4! = 24 số thỏa mãn.
+ Ba chữ số còn lại có 2 chữ số chẵn, 1 chữ số lẻ. Với chữ số lẻ là 1 ta có các trường hợp:
• 4 chữ số là 9; 1; 0; 2 → có 3.3! = 18 số thỏa mãn.
• 4 chữ số là 9; 1; 0; 6 → có 3.3! = 18 số thỏa mãn.
• 4 chữ số là 9; 1; 2; 6 → có 4! = 24 số thỏa mãn.
Tương tự với trường hợp chữ số lẻ là 3 và 5.
→ Số số có mặt chữ số 9 và tổng các chữ số là số chẵn là: 24 + 3.(18 + 18 + 24) = 204.