K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2017

Đáp án A.

- Số số có 4 chữ số khác nhau lập được từ các chữ số đã cho là:  6. A 6 3 = 720.

- Số có mặt chữ số 9 và tổng các chữ số là số chẵn, có 2 trường hợp:

          + Ba chữ số còn lại lẻ → số đó được lập từ 4 chữ số 1; 3; 5; 9 → có 4! = 24 số thỏa mãn.

          + Ba chữ số còn lại có 2 chữ số chẵn, 1 chữ số lẻ. Với chữ số lẻ là 1 ta có các trường hợp:

                   • 4 chữ số là 9; 1; 0; 2 → có 3.3! = 18 số thỏa mãn.

                   • 4 chữ số là 9; 1; 0; 6 → có 3.3! = 18 số thỏa mãn.

                   • 4 chữ số là 9; 1; 2; 6 → có 4! = 24 số thỏa mãn.

Tương tự với trường hợp chữ số lẻ là 3 và 5.

→ Số số có mặt chữ số 9 và tổng các chữ số là số chẵn là: 24 + 3.(18 + 18 + 24) = 204.

26 tháng 12 2019

29 tháng 11 2019

NV
14 tháng 8 2021

Đề bài chính xác là gì nhỉ? Lấy ra 3 số từ tập đã cho, tính xác suất để trong 3 số có đúng 1 số có chữ số 3?

Số cách lập số có 3 chữ số phân biệt từ tập đã cho: \(4.4.3=48\) 

Lấy ra 3 số bất kì: có \(C_{48}^3\) cách

Gọi số có 3 chữ số khác nhau lập từ các số nói trên và luôn có mặt chữ số 3 là abc

TH1: a=3: bc có \(A_4^2=12\) cách chọn

TH2: a khác 3: chọn a có 3 cách, số còn lại có 3 cách, hoán vị nó với 3 cách 2 cách \(\Rightarrow3.3.2=18\) số

\(\Rightarrow12+18=30\) số có mặt chữ số 3 và 18 số không có mặt chữ số 3

Chọn 3 số trong đó có đúng 1 số có mặt chữ số 3: \(C_{30}^1.C_{18}^2\) cách

Xác suất: \(P=\dfrac{C_{30}^1C_{18}^2}{C_{48}^3}=...\)

8 tháng 6 2021

ai giúp e với 

 

9 tháng 6 2021

Đáp án: A

-Chúc bạn học tốt-

4 tháng 1 2019

Đáp án là B

4 tháng 12 2021

cho mình hỏi tại sao phải nhân thêm C42 vậy ạ?

 

12 tháng 4 2017

NV
25 tháng 12 2022

Không gian mẫu: \(A_7^3-A_6^2=180\) số

Các trường hợp số chữ số lẻ nhiều hơn số chữ số chẵn là: 3 chữ số đều lẻ, 2 chữ số lẻ 1 số chữ chẵn

- 3 chữ số đều lẻ: \(A_3^3=3\) số

- 2 chữ số lẻ 1 chữ số chẵn: chọn 2 chữ số lẻ từ 3 chữ số lẻ có \(C_3^2=3\) cách

+ Nếu chữ số chẵn là 0 \(\Rightarrow\) \(3!-2!=4\) cách hoán vị 3 chữ số

+ Nếu chữ số chẵn khác 0 \(\Rightarrow\) có 3 cách chọn chữ số chẵn và \(3!\) cách hoán vị các chữ số

\(\Rightarrow3+3.\left(4+3.3!\right)=69\) số

Xác suất: \(P=\dfrac{69}{180}=\dfrac{23}{60}\)

10 tháng 10 2019

Chọn đáp án B

Phương pháp

Chia các TH sau:

TH1: a<b<c.

TH2: a=b<c.

TH3: a<b=c.

TH4: a=b=c.

Cách giải

Gọi số tự nhiên có 3 chữ số là a b c ¯  (0≤a,b,c≤9, a≠0).

=> S có 9.10.10=900 phần tử. Chọn ngẫu nhiên một số từ S => n(Ω)=900

Gọi A là biến cố: “Số được chọn thỏa mãn a≤b≤c”.

TH1: a<b<c. Chọn 3 số trong 9 số từ 1 đến 9, có duy nhất một cách xếp chúng theo thứ tự tăng dần từ trái qua phải nên TH này có C 9 3  số thỏa mãn.

TH2: a=b<c, có  C 9 2  số thỏa mãn.

TH3: a<b=c có  C 9 2  số thỏa mãn.

TH4: a=b=c có 9 số thỏa mãn.

⇒ n ( A ) = C 9 3 + 2 C 9 2 + 9 = 165

Vậy P ( A ) = 11 60 .