cho tam giac ABC vuong tai A . Gọi M la trung diem cua BC. CMR:ÂM=1/2 BC ( bài này vẽ thêm: Tren tia doi MA ve MD sao cho MD =MA )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta\)BMA và \(\Delta\)DMC:
có BM=MC (GT)
MA=MD(GT)
^BMA= ^DMC( đđ)
=> \(\Delta\)BMA = \(\Delta\)DMC (c-g-c)
=> ^B= ^BCD
Mà nó còn ở vị trí so le trong
=> BA // DC
Mà ta đã học định nghĩa nếu 2 đường thẳng cùng vuông góc với 1 đường thẳng thì song song ( ngược lại)
Và ta đã có AC \(\) vuông với AB ( ^A= \(90^0\))
~~~~Nên AC vuông góc với CD ( đpcm)~~~~
*Xét ΔABM và ΔACM có:
\(\left\{{}\begin{matrix}AB=AC\left(gt\right)\\BM=MC\left(M.l\text{à}.trung.\text{đ}i\text{ểm}.c\text{ủa}.BC\right)\\AM.c\text{ạnh}.chung\end{matrix}\right.\)
⇒ ΔABM = ΔACM (c - c - c)
*Vì ΔABM = ΔACM (cmt)
⇒ \(\widehat{AMB}=\widehat{AMC}\) (hai góc tương ứng) Ta có: \(\widehat{AMB}+\widehat{AMC}=180^o\) (kề bù) ⇒ \(\widehat{AMB}=\widehat{AMC}\) = \(\dfrac{180^o}{2}=90^o\) ⇒ AM ⊥ BC *Xét ΔAMB và ΔDMC có: \(\left\{{}\begin{matrix}AM=MD\left(gt\right)\\\widehat{AMB}=\widehat{DMC}\left(\text{đ}\text{ối}.\text{đ}\text{ỉnh}\right)\\BM=MC\left(gt\right)\end{matrix}\right.\) ⇒ ΔAMB = ΔDMC (c - g - c) ⇒ \(\widehat{ABM}=\widehat{DCM}\) (hai góc tương ứng) Mà hai góc này ở vị trí so le trong ⇒ AB // CD
Hi hi
Aquarius