Trong không gian Oxyz, cho tam giác ABC với A(3;0;0), B(0;6;0), c(0;0;6). Phương trình nào dưới đây là phương trình đường thắng đi qua trực tâm của tam giác ABC và vuông góc với mặt phẳng (ABC).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A.
(P) đi qua A và G nên (P) đi qua trung điểm của BC là điểm
Ta có: cùng phương với véc tơ (-1;1;-2)
Mặt phằng (ABC) có vác tơ pháp tuyến:
cùng phương với véc tơ (0;2;1)
Vì (P) chứa AM và vuông góc với (ABC) nên (P) có véc tơ chỉ phương:
Ngoài ra (P) qua A ( 1 ; - 2 ; 3 ) nên phương trình (P):
Đáp án A.
(P) đi qua A và G nên (P) đi qua trung điểm của BC là điểm
M − 3 2 ; 1 2 ; − 2 .
Ta có: A M → = − 5 2 ; 5 2 ; − 5 cùng phương với véc tơ − 1 ; 1 ; − 2
Mặt phằng (ABC) có vác tơ pháp tuyến:
n 1 → = A B → ; A C → = − 5 ; 2 ; − 4 ; 0 ; 3 ; − 6 = 0 ; − 30 ; − 15
cùng phương với véc tơ 0 ; 2 ; 1 .
Vì (P) chứa AM và vuông góc với (ABC) nên (P) có véc tơ chỉ phương:
n ( P ) → = − 1 ; 1 ; − 2 ; 0 ; 2 ; 1 = − 5 ; − 1 ; 2 .
Ngoài ra (P) qua A 1 ; − 2 ; 3 nên phương trình (P):
− 5 x − 1 − 1 y + 2 + 2 z − 3 = 0 ⇔ 5 x + y − 2 z + 3 = 0